Home About us Contact | |||
Slurry Application (slurry + application)
Selected AbstractsLime and cow slurry application temporarily increases organic phosphorus mobility in an acid soilEUROPEAN JOURNAL OF SOIL SCIENCE, Issue 3 2007P. N. C. MurphyArticle first published online: 13 OCT 200 Summary Phosphorus loss from agricultural soils to water is recognized as a major contributor to eutrophication of surface water bodies. There is much evidence to suggest that liming, a common agricultural practice, may decrease the risk of P loss by decreasing P solubility. An unsaturated leaching column experiment, with treatments of control and two lime rates, was carried out to investigate the effects of liming on P mobility in a low-P acid Irish soil, which was sieved and then packed in columns. Phosphorus was applied at the soil surface in the form of KH2PO4 in solution or as cow slurry. Soil solution was sampled at time intervals over depth and analysed for P fractions. Organic P (OP) was the dominant form of P mobile in soil solution. Liming increased OP mobility, probably through increased dispersion of OP with increased pH. Slurry application also increased OP mobility. Results indicated the potential for OP loss following heavy (100 m,3 ha,1) cow slurry application, even from low-P soils, and suggested that liming may increase this risk. Reactive P (RP) was sorbed strongly and rapidly by the soil and did not move substantially below 5 cm depth. As a result, Olsen-P values in the top 2 cm were greatly increased, which indicates an increased risk of RP loss in overland flow. Lime showed little potential as a soil amendment to reduce the risk of P loss. [source] Methods for evaluating human impact on soil microorganisms based on their activity, biomass, and diversity in agricultural soilsJOURNAL OF PLANT NUTRITION AND SOIL SCIENCE, Issue 3 2006Rainer Georg Joergensen Abstract The present review is focused on microbiological methods used in agricultural soils accustomed to human disturbance. Recent developments in soil biology are analyzed with the aim of highlighting gaps in knowledge, unsolved research questions, and controversial results. Activity rates (basal respiration, N mineralization) and biomass are used as overall indices for assessing microbial functions in soil and can be supplemented by biomass ratios (C : N, C : P, and C : S) and eco-physiological ratios (soil organic C : microbial-biomass C, qCO2, qNmin). The community structure can be characterized by functional groups of the soil microbial biomass such as fungi and bacteria, Gram-negative and Gram-positive bacteria, or by biotic diversity. Methodological aspects of soil microbial indices are assessed, such as sampling, pretreatment of samples, and conversion factors of data into biomass values. Microbial-biomass C (µg (g soil),1) can be estimated by multiplying total PLFA (nmol (g soil),1) by the FPLFA -factor of 5.8 and DNA (µg (g soil),1) by the FDNA -factor of 6.0. In addition, the turnover of the soil microbial biomass is appreciated as a key process for maintaining nutrient cycles in soil. Examples are briefly presented that show the direction of human impact on soil microorganisms by the methods evaluated. These examples are taken from research on organic farming, reduced tillage, de-intensification of land-use management, degradation of peatland, slurry application, salinization, heavy-metal contamination, lignite deposition, pesticide application, antibiotics, TNT, and genetically modified plants. [source] Influence of a TiO2 surface treatment on the growth and adhesion of alumina scales on FeCrAl alloysMATERIALS AND CORROSION/WERKSTOFFE UND KORROSION, Issue 5 2008A. Galerie Abstract Deposits of TiO2 on FeCrAl alloys were obtained by surface TiO2 slurry application or by immersion of samples in tetraisopropylorthotitanate (TIPT) solution followed by air dry which gave the thinnest coatings. Isothermal oxidation of treated samples showed strong modification compared to non-treated ones, particularly in the temperature range of 850,925,°C where parabolic rate constants rapidly decreased when alloys were TiO2 treated. SEM surface observation, X-ray diffraction and ruby fluorescence showed that the presence of TiO2 promoted the formation of ,-Al2O3 whereas non-treated samples exhibited large amounts of transition aluminas. An interesting effect of the rapid change from metastable to stable ,-alumina was a strong increase of scale adhesion, determined by tensile testing, from 300,400 to 2000 J/m2 for scales grown at 850,°C on Aluchrom YHfAl. This was explained not only by the change from outward to mainly inward growth but also by the volume reduction at the transition to alpha transformation. [source] |