Home About us Contact | |||
Slower Growth Rates (slower + growth_rate)
Selected AbstractsPhenotypic plasticity of anuran larvae: environmental variables influence body shape and oral morphology in Rana temporaria tadpolesJOURNAL OF ZOOLOGY, Issue 2 2002Miguel Vences Abstract Environmental variables shaped the morphology of tadpoles of the common frog, Rana temporaria, in various ways at the Pyrenean locality Circo de Piedrafita. Examining only specimens in similar developmental stages, those from small ponds (with higher temperature and higher tadpole density) had lower growth rates, lower relative tail height, lower relative body width and fewer labial keratodonts and keratodont rows. The variation in keratodonts may have been caused by heterochrony related to the slower growth rate. The number of lingual papillae also differed between ponds but was not related to pond size. Higher predator densities caused a higher percentage of damaged tails and a lower relative tail length in specimens with apparently intact tails, probably as a result of incomplete regeneration after mutilations earlier in development. [source] The transcriptomics of life-history trade-offs in whitefish species pairs (Coregonus sp.)MOLECULAR ECOLOGY, Issue 7 2008J. ST-CYR Abstract Despite the progress achieved in elucidating the ecological mechanisms of adaptive radiation, there has been little focus on documenting the extent of adaptive differentiation in physiological functions during this process. Moreover, a thorough understanding of the genomic basis underlying phenotypic adaptive divergence is still in its infancy. One important evolutionary process for which causal genetic mechanisms are largely unknown pertains to life-history trade-offs. We analysed patterns of gene transcription in liver tissue of sympatric dwarf and normal whitefish from two natural lakes, as well as from populations reared in controlled environments, using a 16 006-gene cDNA microarray in order to: (i) document the extent of physiological adaptive divergence between sympatric dwarf and normal species pairs, and (ii) explore the molecular mechanisms of differential life history trade-offs between growth and survival potentially involved in their adaptive divergence. In the two natural lakes, 6.45% of significantly transcribed genes showed regulation either in parallel fashion (2.39%) or in different directions (4.06%). Among genes showing parallelism in regulation patterns, we observed a higher proportion of over-expressed genes in dwarf relative to normal whitefish (70.6%). Patterns observed in controlled conditions were also generally congruent with those observed in natural populations. Dwarf whitefish consistently showed significant over-expression of genes potentially associated with survival through enhanced activity (energy metabolism, iron homeostasis, lipid metabolism, detoxification), whereas more genes associated with growth (protein synthesis, cell cycle, cell growth) were generally down-regulated in dwarf relative to normal whitefish. Overall, parallelism in patterns of gene transcription, as well as patterns of interindividual variation across controlled and natural environments, provide strong indirect evidence for the role of selection in the evolution of differential regulation of genes involving a vast array of potentially adaptive physiological processes between dwarf and normal whitefish. Our results also provide a first mechanistic, genomic basis for the observed trade-off in life-history traits distinguishing dwarf and normal whitefish species pairs, wherein enhanced survival via more active swimming, necessary for increased foraging and predator avoidance, engages energetic costs that translate into slower growth rate and reduced fecundity in dwarf relative to normal whitefish. [source] Concentrations of organochlorine pesticides and polychlorinated biphenyls in amphipods (Gammarus lacustris) along an elevation gradient in mountain lakes of western CanadaENVIRONMENTAL TOXICOLOGY & CHEMISTRY, Issue 11 2003Jules M. Blais Abstract Populations of the amphipod Gammarus lacustris were examined for their concentrations of organochlorine pesticides and polychlorinated biphenyls (PCBs) from seven lakes spanning a 1,300-m elevation gradient in Alberta, Canada. The concentrations of several of the semivolatile organochlorine compounds ([SVOCs], vapor pressure > 0.03 Pa at 20°C) increased at higher altitudes. This pattern was generally not observed among the less volatile organochlorines ([LVOCs], vapor pressure < 0.03 Pa at 20°C). These same SVOC compounds have been previously shown to increase at high latitudes as a result of their long-range transport and preferential deposition in cold climates. We also show that populations of G. lacustris at high elevations have slower growth rates and store more lipids than populations at lower elevations. To resolve the colinearity of independent variables, we used multiple regression to identify patterns of contaminant concentrations in this data set. Multiple regressions showed that the effect of elevation, lipid content, and temperature on contaminant concentrations was no longer significant once the growth rate of Gammarus was included as an independent variable. This study shows that enrichment of SVOCs occurs in Gammarus at high altitudes in Alberta, Canada, and that growth rate (biodilution) appears to be the primary influence. Because Gammarus is an important trophic link in aquatic foodwebs in these environments, enhanced concentrations of toxicants in prey may increase their biomagnification in top predators of high-altitude lakes. [source] Distribution and growth of blue sucker in a Great Plains river, USAFISHERIES MANAGEMENT & ECOLOGY, Issue 4 2007J. L. EITZMANN Abstract, Blue sucker, Cycleptus elongatus (Le Sueur), was sampled in the Kansas River, Kansas, USA to determine how relative abundance varies spatially and growth compares to other populations. Electric fishing was conducted at 36 fixed sites during five time periods from March 2005 to January 2006 to determine seasonal distribution. An additional 302 sites were sampled in summer 2005 to determine distribution throughout the river. A total of 101 blue sucker was collected ranging from 242 to 782 mm total length and 1,16 years old. Higher catch rates were observed in upper river segments and below a low-head dam in lower river segments, and catch rates were higher during November in the upriver sites. Kansas River blue sucker exhibited slower growth rates than other populations in the Great Plains including populations as far north as South Dakota. [source] Breaking taboos in the tropics: incest promotes colonization by wood-boring beetlesGLOBAL ECOLOGY, Issue 4 2001Bjarte H. Jordal Abstract 1,Inbreeding and parthenogenesis are especially frequent in colonizing species of plants and animals, and inbreeding in wood-boring species in the weevil families Scolytinae and Platypodidae is especially common on small islands. In order to study the relationship between colonization success, island attributes and mating system in these beetles, we analysed the relative proportions of inbreeders and outbreeders for 45 Pacific and Old World tropical islands plus two adjacent mainland sites, and scored islands for size, distance from nearest source population, and maximum altitude. 2,The numbers of wood-borer species decreased with decreasing island size, as expected; the degree of isolation and maximum island altitude had negligible effects on total species numbers. 3,Numbers of outbreeding species decreased more rapidly with island size than did those of inbreeders. Comparing species with similar ecology (e.g. ambrosia beetles) showed that this difference was best explained by differential success in colonization, rather than by differences in resource utilization or sampling biases. This conclusion was further supported by analyses of data from small islands, which suggested that outbreeding species have a higher degree of endemism and that inbreeding species are generally more widespread. 4,Recently established small populations necessarily go through a period of severe inbreeding, which should affect inbreeding species much less than outbreeding ones. In addition, non-genetic ecological and behavioural (,Allee') effects are also expected to reduce the success of outbreeding colonists much more than that of inbreeders: compared with inbreeders, outbreeders are expected to have slower growth rates, have greater difficulties with mate-location and be vulnerable to random extinction over a longer period. [source] |