Slow Waves (slow + wave)

Distribution by Scientific Domains
Distribution within Medical Sciences

Kinds of Slow Waves

  • gastric slow wave
  • late slow wave

  • Terms modified by Slow Waves

  • slow wave activity
  • slow wave sleep

  • Selected Abstracts


    Propagating contractions of the circular muscle evoked by slow stretch in flat sheets of guinea-pig ileum

    NEUROGASTROENTEROLOGY & MOTILITY, Issue 6 2001
    S. J. H. Brookes
    Flat sheet preparations of guinea-pig ileum were stretched circumferentially and the propagation of circular muscle contractions along the preparation was investigated. Slow stretch, at 100 ,m s,1, of a 50-mm long flat sheet of intestine, evoked circular muscle contraction orally, which propagated, without decrement, for up to 30 mm. This occurred despite circular muscle shortening being prevented, and in the absence of propulsion of contents. Thus, propagation in this flat sheet preparation could not explained on the basis of neuro-mechanical interactions, as previously proposed. Irrespective of the length of preparations, contraction amplitude decreased significantly in the most aboral 10,15 mm of intestine. This was not due to descending inhibitory pathways, but was associated with interruption of ascending excitatory pathways near the aboral end. Slow waves were not detected in circular muscle cells in any preparation (n=8). Smooth muscle action potentials evoked in circular muscle cells, in the presence of tetrodotoxin (TTX, 0.6 ,mol L,1), did not propagate for more than 1 mm in the longitudinal axis. Propagation of circular muscle activity, evoked by slow stretch of flat sheet preparations, reveals the presence of a mechanism other than myogenic spread or the neuro-mechanical interactions previously proposed to account for propagation; the nature of this mechanism remains to be determined. [source]


    Preliminary application of processed electroencephalogram monitoring to differentiate senile dementia from depression

    PSYCHOGERIATRICS, Issue 3 2009
    Norihito OSHIMA
    Abstract Background:, It is difficult, but important, to distinguish between dementia and depression in old age because senile depression has atypical symptoms, including cognitive impairment and memory disorder. Now brain computed tomography, magnetic resonance imaging, single photon emission computed tomography, and positron emission tomography can be used to differentiate between these two conditions. However, these methods are expensive and not always available. In the present case series, we assessed the potential of monitoring the bispectral index to distinguish between dementia and depression. Methods:, A processed electroencephalogram monitor (bispectral index (BSI) monitor) was used to assess brain activity during relaxed wakefulness in 12 participants (seven with Alzheimer's disease (AD), three with depression, and two healthy volunteers). Each recording lasted 5 min and four variables (i.e. BSI, 95% spectral edge frequency, electromyogram activity, and signal quality index) were monitored. Results:, The BSI was significantly smaller in AD patients than in patients with depression (P < 0.05) and the 95% spectral edge frequency tended to be lower in AD patients than in patients with depression (P = 0.26). Slow waves were found in patients with AD and beta waves were predominant in patients with depression and healthy volunteers. Conclusion:, In conclusion, the BSI and 95% spectral edge frequency were slightly smaller in dementia patients than in patients with depression. Paroxysmal slow waves may account for the low bispectral index. Thus, BSI monitoring may become a useful tool with which to distinguish AD from depression. [source]


    Synchronization of enteric neuronal firing during the murine colonic MMC

    THE JOURNAL OF PHYSIOLOGY, Issue 3 2005
    Nick J. Spencer
    DiI (1,1,didodecyl-3,3,3,,3,-tetramethylindocarbecyanine perchlorate) retrograde labelling and intracellular electrophysiological techniques were used to investigate the mechanisms underlying the generation of spontaneously occurring colonic migrating myoelectric complexes (colonic MMCs) in mice. In isolated, intact, whole colonic preparations, simultaneous intracellular electrical recordings were made from pairs of circular muscle (CM) cells during colonic MMC activity in the presence of nifedipine (1,2 ,m). During the intervals between colonic MMCs, spontaneous inhibitory junction potentials (IJPs) were always present. The amplitudes of spontaneous IJPs were highly variable (range 1,20 mV) and occurred asynchronously in the two CM cells, when separated by 1 mm in the longitudinal axis. Colonic MMCs occurred every 151 ± 7 s in the CM and consisted of a repetitive discharge of cholinergic rapid oscillations in membrane potential (range: 1,20 mV) that were superimposed on a slow membrane depolarization (mean amplitude: 9.6 ± 0.5 mV; half-duration: 25.9 ± 0.7 s). During the rising (depolarizing) phase of each colonic MMC, cholinergic rapid oscillations occurred simultaneously in both CM cells, even when the two electrodes were separated by up to 15 mm along the longitudinal axis of the colon. Smaller amplitude oscillations (< 5 mV) showed poor temporal correlation between two CM cells, even at short electrode separation distances (i.e. < 1 mm in the longitudinal axis). When the two electrodes were separated by 20 mm, all cholinergic rapid oscillations and IJPs in the CM (regardless of amplitude) were rarely, if ever, coordinated in time during the colonic MMC. Cholinergic rapid oscillations were blocked by atropine (1 ,m) or tetrodotoxin (1 ,m). Slow waves were never recorded from any CM cells. DiI labelling showed that the maximum projection length of CM motor neurones and interneurones along the bowel was 2.8 mm and 13 mm, respectively. When recordings were made adjacent to either oral or anal cut ends of the colon, the inhibitory or excitatory phases of the colonic MMC were absent, respectively. In summary, during the colonic MMC, cholinergic rapid oscillations of similar amplitudes occur simultaneously in two CM cells separated by large distances (up to 15 mm). As this distance was found to be far greater than the projection length of any single CM motor neurone, we suggest that the generation of each discrete cholinergic rapid oscillation represents a discreet cholinergic excitatory junction potential (EJP) that involves the synaptic activation of many cholinergic motor neurones simultaneously, by synchronous firing in many myenteric interneurones. Our data also suggest that ascending excitatory and descending inhibitory nerve pathways interact and reinforce each other. [source]


    Pacing of interstitial cells of Cajal in the murine gastric antrum: neurally mediated and direct stimulation

    THE JOURNAL OF PHYSIOLOGY, Issue 2 2003
    Elizabeth A. H. Beckett
    Phase advancement of electrical slow waves and regulation of pacemaker frequency was investigated in the circular muscle layer of the gastric antra of wild-type and W/WV mice. Slow waves in the murine antrum of wild-type animals had an intrinsic frequency of 4.4 cycles min,1 and were phase advanced and entrained to a maximum of 6.3 cycles min,1 using 0.1 ms pulses of electrical field stimulation (EFS) (three pulses delivered at 3,30 Hz). Pacing of slow waves was blocked by tetrodotoxin (TTX) and atropine, suggesting phase advancement was mediated via intrinsic cholinergic nerves. Phase advancement and entrainment of slow waves via this mechanism was absent in W/WV mutants which lack intramuscular interstitial cells of Cajal (ICC-IM). These data suggest that neural regulation of slow wave frequency and regulation of smooth muscle responses to slow waves are mediated via nerve-ICC-IM interactions. With longer stimulation parameters (1.0,2.0 ms), EFS phase advanced and entrained slow waves in wild-type and W/WV animals. Pacing with 1,2 ms pulses was not inhibited by TTX or atropine. These data suggest that stimulation with longer pulse duration is capable of directly activating the pacemaker mechanism in ICC-MY networks. In summary, intrinsic excitatory neurons can phase advance and increase the frequency of antral slow waves. This form of regulation is mediated via ICC-IM. Longer pulse stimulation can directly activate ICC-MY in the absence of ICC-IM. [source]


    FLUID FLOW IN DISTENSIBLE VESSELS

    CLINICAL AND EXPERIMENTAL PHARMACOLOGY AND PHYSIOLOGY, Issue 2 2009
    CD Bertram
    SUMMARY 1Flow in single vascular conduits is reviewed, divided into distended and deflated vessels. 2In distended vessels with pulsatile flow, wave propagation and reflection dominate the spatial and temporal distribution of pressure, determining the shape, size and relative timing of measured pressure waveforms, as well as the instantaneous pressure gradient everywhere. Considerable research has been devoted to accessing the information on pathological vascular malformations contained in reflected waves. Slow waves of contraction of vessel wall muscle, responsible for transport of oesophageal, ureteral and gut contents, have also been modelled. 3The pressure gradient in a vessel drives the flow. Flow rate can be predicted both analytically and numerically, but analytical theory is limited to idealized geometry. The complex geometry of biological system conduits necessitates computation instead. Initially limited to rigid boundaries, numerical methods now include fluid,structure interaction and can simultaneously model solute transport, thus predicting accurately the environment of the mechanosensors and chemosensors at vessel surfaces. 4Deflated vessels display all phenomena found in distended vessels, but have additional unique behaviours, especially flow rate limitation and flow-induced oscillation. Flow rate limitation is widespread in the human body and has particular diagnostic importance in respiratory investigation. Because of their liquid lining, the pulmonary airways are also characterized by important two-phase flows, where surface tension phenomena create flows and determine the patency and state of collapse of conduits. 5Apart from the vital example of phonation, sustained self-excited oscillation is largely avoided in the human body. Where it occurs in snoring, it is implicated in the pathological condition of sleep apnoea. [source]


    What are you looking at?

    DEVELOPMENTAL SCIENCE, Issue 1 2008
    Infants' neural processing of an adult's object-directed eye gaze
    Previous research suggests that by 4 months of age infants use the eye gaze of adults to guide their attention and facilitate processing of environmental information. Here we address the question of how infants process the relation between another person and an external object. We applied an ERP paradigm to investigate the neural processes underlying the perception of the direction of an adult's eye gaze in 4-month-old infants. Infants showed differential processing of an adult's eye gaze, which was directed at a simultaneously presented object compared to non-object-directed eye gaze. This distinction was evident in two ERP components: The Negative component, reflecting attentional processes, and the positive slow wave, which is involved in memory encoding. The implications of these findings for the development of joint attention and related social cognitive functions are discussed. [source]


    Effect of Interictal Spikes on Single-Cell Firing Patterns in the Hippocampus

    EPILEPSIA, Issue 4 2007
    Jun-Li Zhou
    Summary:,Purpose: The interictal EEG spike(s) is the hallmark of the epileptic EEG. While focal interictal spike (IS) have been associated with transitory cognitive impairment, with the type of deficit dependent on where in the cortex the IS arises, the mechanism by which IS result in transitory dysfunction is not known. The purpose of this study was to determine the effect of IS on single-cell firing patterns in freely moving rats with a prior history of seizures. Methods: We studied IS in two seizure models; pilocarpine-induced status epilepticus and recurrent flurothyl models. The effect of spontaneous hippocampal spikes on action potentials (APs) of CA1 cells in rats walking in a familiar environment was investigated using 32 extracellular electrodes. We also compared the effect of spikes on two types of hippcampal cells; place cells that discharge rapidly only when the rat's head is in a specific part of the environment, the so-called firing field, and interneurons, which are a main source of inhibition in the hippocampus. Results: IS were associated with a decreased likelihood of AP compared with IS-free portions of the record. Compared to pre-IS baseline, IS were followed by significant decreases in CA1 APs for periods up to 2 s following the IS in both models. When occurring in flurries, IS were associated with a pronounced decrease in APs. The response to IS was cell-dependent; IS resulted in decreases in AP firing after the IS in interneurons but not place cells. Conclusions: This study demonstrates that IS have substantial effects on cellular firing in the hippocampus and that these effects last far longer than the spike and slow wave. Furthermore, the effect of IS on cellular firing was cell specific, affecting interneurons more than place cells. These findings suggest that IS may contribute to seizure-induced cognitive impairment by altering AP firing in a cell-specific manner. [source]


    Angelman Syndrome: Difficulties in EEG Pattern Recognition and Possible Misinterpretations

    EPILEPSIA, Issue 8 2003
    Kette D. Valente
    Summary: Purpose: This study aimed to evaluate the sensitivity of the EEG in Angelman syndrome (AS), to verify the age at onset of suggestive EEGs and to study EEG patterns, analyzing variations and comparing our findings with nomenclature previously used. Methods: Seventy EEG and 15 V-EEGs of 26 patients were analyzed. Suggestive EEG patterns of AS were classified in delta pattern (DP), theta pattern (TP), and posterior discharges (PDs). Generic terms were used to simplify the analysis. Results: Suggestive EEGs were observed in 25 (96.2%) patients. DP occurred in 22 patients with four variants,hypsarrhythmic-like: irregular, high-amplitude, generalized delta activity (DA) with multifocal epileptiform discharges (EDs); slow variant: regular, high-amplitude, generalized DA with rare EDs; ill-defined slow spike-and-wave: regular, high-amplitude, generalized DA with superimposed EDs characterizing a slow wave, with notched appearance; triphasic-like: rhythmic, moderate-amplitude DA over anterior regions with superimposed EDs. TP was observed in eight patients, as generalized or over the posterior regions. PDs were seen in 19 patients as runs of sharp waves or runs of high-amplitude slow waves with superimposed EDs. TP was the only age-related pattern (younger than 8 years) and observed only in patients with deletion. In 15 patients who had an EEG before the clinical diagnosis, 60% had a suggestive tracing. Conclusions: Although some EEG descriptions are not very detailed, and every author describes findings in a slightly different manner, obviously a common denominator must exist. In this context, EEG seems to be a very sensitive method for the diagnosis of AS, offering an opportunity to corroborate this etiologic diagnosis. Conversely, we do not believe that these patterns may be accounted as specific, except for the delta pattern, which seems to be extremely unusual in other syndromes. Other EEG patterns observed in AS, such as theta activity and PDs, occur in a wide variety of disorders. Nonetheless, their importance for the EEG diagnosis of AS is supported by the fact that they are associated with other features and may be helpful in a proper clinical setting. [source]


    Movement-Induced Focal Motor Seizures and Choreoathetosis As- sociated with Nonketotic Hyperglycemia: A Case Report

    EPILEPSIA, Issue 2000
    Hisashi Tanaka
    Case Report: We report the case of a diabetic woman who developed right-sided reflex seizures and bilateral choreoathetosis during an episode of nonketotic hyperglycemia. The patient was a 67-year-old woman with a 14-year history of HCV-related liver cirrhosis who experienced polydipsia and polyuria in January 1998. She began to have episodes of abnormal hyperkinetic movements of the right upper extremity and tonic-clonic seizures in the right arm triggered by voluntary movements of right or bilateral arms in the beginning of March 1998. The seizures increased in frequency and consequently left her disabled. She was admitted to our hospital with complaints of these abnormal motor phenomena on March 9, 1998. Neurological examinations revealed that she was alert, well-oriented, and that cranial nerve functions were normal. Slight motor weakness of the right upper limb and deep tendon hyporeflexes were observed in all extremities. Sensations and cerebellar functions were intact. Choreic or athetotic involuntary movements were seen in the bilateral upper limbs and neck. These involuntary movements were increased by voluntary movement or posturing of the upper limbs. The focal tonic-clonic seizures were easily triggered by voluntary movements such as knotting a cord. This seizure suddenly began by tonic movements in the right upper limb and gradually progressed to the right hemi-face and neck without loss of consciousness. The average duration of seizures was about one minute. The laboratory data demonstrated mild leukocytopenia, thrombocytopenia, hepatic dysfunction, and hyperglycemia without ketosis. Fasting blood glucose was 41 I mg/dl, and HbAlc was 14.5%. Blood ammonia was within normal levels. Cranial CT revealed no abnormalities. Brain MRI on T I-weighted images demonstrated bilateral high signal intensity in the putamen. An interictal EEG revealed a symmetrical slow background activity of 7,8 Hz. An ictal EEG recording showed a 2.5 4 Hz irregular sharp and slow wave discharge in the bilateral frontal-central regions. Treatment with carbamazepine was ineffective for the seizures. However, the seizures completely disappeared after the administration of insulin on March 17. Under good control of the hyperglycemia, the abnormal involuntary movements decreased gradually and then completely disappeared; the patient became neurologically asymptomatic by March 30. The follow-tip EEG demonstrated 9-Hz alpha background activity without any epileptic discharges. Conclusions: Nonketotic hyperglycemia has been rarely reported to cause stimulus-induced seizures or hyperkinetic involuntary movements such as hemichorea-ballism. To our knowledge, this is the first reported case of both induced seizures and involuntary movements simultaneously caused by hyperglycemia. Movement-induced seizures and choreoathetoid movements in this patient can be considered to result from transiently-increased activity in the basal ganglia and/or cerebral cortex associated with metaholic disorders. [source]


    Topographic distribution of direct and hippocampus- mediated entorhinal cortex activity evoked by olfactory tract stimulation

    EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 7 2004
    Vadym Gnatkovsky
    Abstract Olfactory information is central for memory-related functions, such as recognition and spatial orientation. To understand the role of olfaction in learning and memory, the distribution and propagation of olfactory tract-driven activity in the parahippocampal region needs to be characterized. We recently demonstrated that repetitive stimulation of the olfactory tract in the isolated guinea pig brain preparation induces an early direct activation of the rostrolateral entorhinal region followed by a delayed response in the medial entorhinal cortex (EC), preceded by the interposed activation of the hippocampus. In the present study we performed a detailed topographic analysis of both the early and the delayed entorhinal responses induced by patterned stimulation of the lateral olfactory tract in the isolated guinea pig brain. Bi-dimensional maps of EC activity recorded at 128 recording sites with 4 × 4 matrix electrodes (410 µm interlead separation) sequentially placed in eight different positions, showed (i) an early (onset at 16.09 ± 1.2 ms) low amplitude potential mediated by the monosynaptic LOT input, followed by (ii) an associative potential in the rostral EC which originates from the piriform cortex (onset at 33.2 ± 2.3 ms), and (iii) a delayed potential dependent on the previous activation of the hippocampus. The sharp component of the delayed response had an onset latency between 52 and 63 ms and was followed by a slow wave. Laminar profile analysis demonstrated that in the caudomedial EC the delayed response was associated with two distinct current sinks located in deep and in superficial layers, whereas in the rostrolateral EC a small-amplitude sink could be detected in the superficial layers exclusively. The present report demonstrates that the output generated by the hippocampal activation is unevenly distributed across different EC subregions and indicates that exclusively the medial and caudal divisions receive a deep-layer input from the hippocampus. In the rostrolateral EC, specific network interactions may be generated by the convergence of the direct olfactory input and the olfaction-driven hippocampal output. [source]


    Parallel activation of field CA2 and dentate gyrus by synaptically elicited perforant path volleys

    HIPPOCAMPUS, Issue 8 2004
    Renata Bartesaghi
    Abstract Previous studies showed that dorsal psalterium (PSD) volleys to the entorhinal cortex (ENT) activated in layer II perforant path neurons projecting to the dentate gyrus. The discharge of layer II neurons was followed by the sequential activation of the dentate gyrus (DG), field CA3, field CA1. The aim of the present study was to ascertain whether in this experimental model field, CA2, a largely ignored sector, is activated either directly by perforant path volleys and/or indirectly by recurrent hippocampal projections. Field potentials evoked by single-shock PSD stimulation were recorded in anesthetized guinea pigs from ENT, DG, fields CA2, CA1, and CA3. Current source-density (CSD) analysis was used to localize the input/s to field CA2. The results showed the presence in field CA2 of an early population spike superimposed on a slow wave (early response) and of a late and smaller population spike, superimposed on a slow wave (late response). CSD analysis during the early CA2 response showed a current sink in stratum lacunosum-moleculare, followed by a sink moving from stratum radiatum to stratum pyramidale, suggesting that this response represented the activation and discharge of CA2 pyramidal neurons, mediated by perforant path fibers to this field. CSD analysis during the late response showed a current sink in middle stratum radiatum of CA2 followed by a sink moving from inner stratum radiatum to stratum pyramidale, suggesting that this response was mediated by Schaffer collaterals from field CA3. No early population spike was evoked in CA3. However, an early current sink of small magnitude was evoked in stratum lacunosum-moleculare of CA3, suggesting the presence of synaptic currents mediated by perforant path fibers to this field. The results provide novel information about the perforant path system, by showing that dorsal psalterium volleys to the entorhinal cortex activate perforant path neurons that evoke the parallel discharge of granule cells and CA2 pyramidal neurons and depolarization, but no discharge of CA3 pyramidal neurons. Consequently, field CA2 may mediate the direct transfer of ENT signals to hippocampal and extrahippocampal structures in parallel with the DG-CA3-CA1 system and may provide a security factor in situations in which the latter is disrupted. © 2004 Wiley-Liss, Inc. [source]


    Negative BOLD responses to epileptic spikes

    HUMAN BRAIN MAPPING, Issue 6 2006
    Eliane Kobayashi
    Abstract Simultaneous electroencephalogram/functional magnetic resonance imaging (EEG-fMRI) during interictal epileptiform discharges can result in positive (activation) and negative (deactivation) changes in the blood oxygenation level-dependent (BOLD) signal. Activation probably reflects increased neuronal activity and energy demand, but deactivation is more difficult to explain. Our objective was to evaluate the occurrence and significance of deactivations related to epileptiform discharges in epilepsy. We reviewed all EEG-fMRI studies from our database, identified those with robust responses (P = 0.01, with ,5 contiguous voxels with a |t| > 3.1, including ,1 voxel at |t| > 5.0), and divided them into three groups: activation (A = 8), deactivation (D = 9), and both responses (AD = 43). We correlated responses with discharge type and location and evaluated their spatial relationship with regions involved in the "default" brain state (Raichle et al. [2001]: Proc Natl Acad Sci 98:676,682]. Deactivations were seen in 52/60 studies (AD+D): 26 related to focal discharges, 12 bilateral, and 14 generalized. Deactivations were usually distant from anatomical areas related to the discharges and more frequently related to polyspike- and spike-and-slow waves than to spikes. The "default" pattern occurred in 10/43 AD studies, often associated with bursts of generalized discharges. In conclusion, deactivations are frequent, mostly with concomitant activation, for focal and generalized discharges. Discharges followed by a slow wave are more likely to result in deactivation, suggesting neuronal inhibition as the underlying phenomenon. Involvement of the "default" areas, related to bursts of generalized discharges, provides evidence of a subclinical effect of the discharges, temporarily suspending normal brain function in the resting state. Hum Brain Mapp, 2005. © 2005 Wiley-Liss, Inc. [source]


    Electrophysiological Signals of Familiarity and Recency in the Infant Brain

    INFANCY, Issue 5 2010
    Kelly A. Snyder
    Electrophysiological work in nonhuman primates has established the existence of multiple types of signals in the temporal lobe that contribute to recognition memory, including information regarding a stimulus's relative novelty, familiarity, and recency of occurrence. We used high-density event-related potentials (ERPs) to examine whether young infants represent these distinct types of information about previously experienced items. Twenty-four different highly familiar and initially novel items were each repeated exactly once either immediately (Experiment 1), or following one intervening item (Experiment 2). A late slow wave (LSW) component of the ERP exhibited neural responses consistent with recency signals over right-central leads, but only when there were no intervening stimuli between repetitions. The LSW also exhibited responses consistent with familiarity signals over anterior-temporal leads, but only when there were intervening stimuli between repetitions. A mid-latency negative component (i.e., the Nc) also distinguished familiar from novel items, but did not exhibit a pattern of responding consistent with familiarity signals. These findings suggest that infants encode information about a variety of objects from their natural environments into long-term memory, and can discriminate between familiar and unfamiliar items, and between recently seen and new items, very quickly (within 1 sec). They also suggest that infants represent information about not only whether a stimulus is familiar or unfamiliar but also whether it has been seen recently. [source]


    Neural Correlates of Encoding Predict Infants' Memory in the Paired-Comparison Procedure

    INFANCY, Issue 3 2010
    Kelly A. Snyder
    The present study used event-related potentials (ERPs) to monitor infant brain activity during the initial encoding of a previously novel visual stimulus, and examined whether ERP measures of encoding predicted infants' subsequent performance on a visual memory task (i.e., the paired-comparison task). A late slow wave component of the ERP measured at encoding predicted infants' immediate performance in the paired-comparison task: amplitude of the late slow wave at right-central and temporal leads decreased with stimulus repetition, and greater decreases at right-anterior-temporal leads during encoding were associated with better memory performance at test. By contrast, neither the amplitude nor latency of the negative central (Nc) component predicted infants' subsequent performance in the paired-comparison task. These findings are discussed with respect to a biased competition model of visual attention and memory. [source]


    Effects and probable mechanisms of electroacupuncture at the Zusanli point on upper gastrointestinal motility in rabbits

    JOURNAL OF GASTROENTEROLOGY AND HEPATOLOGY, Issue 10 2007
    Wei-Xin Niu
    Abstract Background and Aim:, The purposes of this study were to investigate the regulative effect of acupuncture on gastrointestinal motility in rabbits and to explore the probable mechanism of electroacupuncture. Methods:, The experiment was performed on 30 rabbits implanted with three pairs of electrodes, which were equally divided into three groups: the control group, the Zusanli group, and the non-acupuncture point group. The gastrointestinal myoelectrical activity of each conscious rabbit was recorded when acupuncture was applied. Motilin in plasma, cholecystokinin (CCK) in serum, the activity of acetylcholine esterase, nitric oxide synthase (NOS), and the vesicle of nerve endings in the stomach tissue and jejunum were investigated. Results:, It was found that electroacupuncture did not exert much influence on the slow wave of gastrointestinal myoelectrical activity, but significantly increased the number and amplitude of spikes. In the Zusanli group, the concentration of motilin and CCK was much higher at the post-acupuncture stage than at the pre-acupuncture stage. Electroacupuncture significantly enhanced the activity of acetylcholine esterase. Moreover, we found out that in the Zusanli group, the number of vesicles without granula was significantly fewer than in the control group. The activity of NOS was less in the Zusanli group than in the control group. Conclusions:, Acupuncture may enhance the gastrointestinal myoelectrical activity of conscious rabbits. The cholinergic nerve, nitric oxide, motilin, and CCK may contribute to acupuncture mechanisms. [source]


    The Effects of Fetal Alcohol Syndrome on Response Execution and Inhibition: An Event-Related Potential Study

    ALCOHOLISM, Issue 11 2009
    Matthew J. Burden
    Background:, Both executive function deficits and slower processing speed are characteristic of children with fetal alcohol exposure, but the temporal dynamics of neural activity underlying cognitive processing deficits in fetal alcohol spectrum disorder have rarely been studied. To this end, event-related potentials (ERPs) were used to examine the nature of alcohol-related effects on response inhibition by identifying differences in neural activation during task performance. Methods:, We recorded ERPs during a Go/No-go response inhibition task in 2 groups of children in Cape Town, South Africa (M age = 11.7 years; range = 10 to 13),one diagnosed with fetal alcohol syndrome (FAS) or partial FAS (FAS/PFAS; n = 7); the other, a control group whose mothers abstained or drank only minimally during pregnancy (n = 6). Children were instructed to press a "Go" response button to all letter stimuli presented except for the letter "X," the "No-go" stimulus, which occurred relatively infrequently. Results:, Task performance accuracy and reaction time did not differ between groups, but differences emerged for 3 ERP components,P2, N2, and P3. The FAS/PFAS group showed a slower latency to peak P2, suggesting less efficient processing of visual information at a relatively early stage (,200 ms after stimulus onset). Moreover, controls showed a larger P2 amplitude to Go versus No-go, indicating an early discrimination between conditions that was not seen in the FAS/PFAS group. Consistent with previous literature on tasks related to cognitive control, the control group showed a well-defined, larger N2 to No-go versus Go, which was not evident in the FAS/PFAS group. Both groups showed the expected larger P3 amplitude to No-go versus Go, but this condition difference persisted in a late slow wave for the FAS/PFAS group, suggesting increased cognitive effort. Conclusions:, The timing and amplitude differences in the ERP measures suggest that slower, less efficient processing characterizes the FAS/PFAS group during initial stimulus identification. Moreover, the exposed children showed less sharply defined components throughout the stimulus and response evaluation processes involved in successful response inhibition. Although both groups were able to inhibit their responses equally well, the level of neural activation in the children with FAS/PFAS was greater, suggesting more cognitive effort. The specific deficits in response inhibition processing at discrete stages of neural activation may have implications for understanding the nature of alcohol-related deficits in other cognitive domains as well. [source]


    Low-cost surface-reduction technique for RFID reader antennas

    MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, Issue 7 2010
    Matthieu Egels
    Abstract A low-cost technique for surface reduction of patch antennas is presented. It is based on the slow wave phenomenon. To create slow wave, a frequency selective surface has been burned on the ground plane of a patch antenna. With this technique, a patch antenna has been designed. An antenna for RFID reader at 915 MHz has been designed and simulated. It uses a 1.6-mm-thick FR4 epoxy substrate (,r = 4.5 h = 1.6 mm tan (,) = 0.02) measures 61 mm × 65 mm. His maximum gain is 2 dB. © 2010 Wiley Periodicals, Inc. Microwave Opt Technol Lett 52: 1469,1471, 2010; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/mop.25241 [source]


    Circadian patterns of gastric electrical and mechanical activity in dogs

    NEUROGASTROENTEROLOGY & MOTILITY, Issue 1 2008
    R. Aviv
    Abstract, Gastric motor function assessment, in humans and animals, is typically performed for short recording periods. The aim of this article was to monitor gastric electrical and motor activity in the antrum and fundus simultaneously, for long periods, using a new implantable system. Ten dogs were implanted with fundic and antral electrodes for assessment of impedance and electrical activity. Dogs were studied while in cages, for periods of 22,26 h. From late evening and until feeding on the next day, slow wave (SW) rhythm demonstrated a distinct pattern of intermittent pauses (mean duration = 22.8 ±4.1 s) that delineated groups of SW's. Phasic increases in fundic tone were seen mostly in association with SW pauses, and were highly correlated with antral contractions, R2 = 0.652, P < 0.05. The SW rate (events per minute) in the postprandial period, fasting and night time was 4.2 ± 0.2, 5 ± 0.2 and 4.7 ± 0.3, respectively, P < 0.05 postprandial vs other periods. Antral and fundic mechanical activities were highly correlated during fasting, particularly at night. This novel method of prolonged gastric recording provides valuable data on the mechanical and electrical activity of the stomach, not feasible by current methods of recording. During fasting, fundic and antral motor activities are highly correlated and are associated with periodic pauses in electrical activity. [source]


    Spatial determination of successive spikes in the isolated cat duodenum

    NEUROGASTROENTEROLOGY & MOTILITY, Issue 6 2004
    W. J. E. P. Lammers
    Abstract, In seven isolated segments of the feline duodenum, the timings of all spikes and the locations of all spike patches that occurred after 12,16 successive slow waves were analysed. Simultaneous recordings were performed during 1-min periods using 240 extracellular electrodes (24 × 10 array; interelectrode distance 2 mm) positioned onto the serosal surface. In all seven preparations, spikes always occurred during the first half of the slow wave cycle. From preparation to preparation, and within 1-min periods in each preparation, there was limited variation in the spike,spike intervals, in the times between the spikes and the preceding slow wave and in the number of spikes at each electrode site. In contrast, the number of electrode sites that recorded spikes and the number of spike patches both showed great variability between preparations and sometimes within a single preparation. In addition, the location of spikes and spike patches was not random but was significantly concentrated in certain areas, often located along the anti-mesenteric border, while other sites showed little or no spike activity. In conclusion, spikes and spike patches tend to occur significantly in some areas and not in others. This spatial heterogeneity will play a role in intestinal motility. [source]


    Detection of gastric slow wave uncoupling from multi-channel electrogastrogram: validations and applications

    NEUROGASTROENTEROLOGY & MOTILITY, Issue 5 2003
    Z. S. Wang
    Abstract Current methodology of single channel electrogastrography is unable to detect coupling or uncoupling of gastric slow waves, which is crucial for gastric emptying. In this study, a new methodology, called cross-spectral analysis method, was established to compute the coupling percentage of multi-channel gastric slow waves recorded using serosal electrodes and electrogastrogram (EGG). Two experiments were performed to validate the method and demonstrate its applications in clinical research. In experiment 1, simultaneous recordings of gastric slow waves were made in five dogs from serosal electrodes and cutaneous electrodes. In experiment 2, four-channel fasting EGGs were made in 10 volunteers for 30 min during waking and 30 min during non-rapid eye movement (REM) sleep. The validation study (experiment 1) showed that the slow wave coupling calculated from the EGGs was correlated with that computed from the serosal recordings. The gastric slow wave coupling percentages detected from both serosal and cutaneous recordings were significantly impaired during vasopressin infusion (6.3 ± 2.6 vs 62.4 ± 6.3, P < 0.001 for serosal recordings; 6.7 ± 3.0 vs 57.2 ± 2.7, P < 0.001 for cutaneous recordings), and the coupling percentages respectively calculated from serosal and cutaneous recordings were significantly correlated during the baseline recording period (R = 0.922, P < 0.05) and vasopressin infusion period (R = 0.916, P < 0.05). In experiment 2, the gastric slow wave became less coupled when healthy volunteers fell asleep. The percentage of slow wave coupling calculated from the EGGs was 68.2 ± 17.9% during waking but 41.9 ± 20.8 during non-REM sleep (P < 0.05). The method developed in this study is reliable for the detection of slow wave uncoupling from multi-channel EGGs. Gastric slow wave coupling is impaired during vasopressin infusion and sleep. These data suggest that this method has potential applications in physiological and clinical studies. [source]


    Spatiotemporal changes of slow wave activities before and after 14 Hz/12 Hz sleep spindles during stage 2 sleep

    PSYCHIATRY AND CLINICAL NEUROSCIENCES, Issue 3 2001
    Kazutaka Ueda
    Abstract The present study examined the spatiotemporal changes of slow wave (delta and theta bands) activities before and after 14 Hz/12 Hz sleep spindles during stage 2 sleep, using topographic mapping of electroencephalogram (EEG) power. Both types of sleep spindles appeared after slow wave activities of background EEG decreased. Moreover, the appearance of sleep spindles provided increasing EEG slow wave activities in the subsequent period. Further, the present results showed that an appearance of 14 Hz sleep spindle facilitated slow wave activities at the centro-parietal areas, while an appearance of 12 Hz sleep spindle facilitated slow wave activities at the fronto-central areas. These results suggest that sleep spindles provide cortical de-arousal, and serve to maintain sleep. [source]


    ERP/CSD indices of impaired verbal working memory subprocesses in schizophrenia

    PSYCHOPHYSIOLOGY, Issue 3 2006
    Jürgen Kayser
    Abstract To disentangle subprocesses of verbal working memory deficits in schizophrenia, long EEG epochs (>10 s) were recorded from 13 patients and 17 healthy adults during a visual word serial position test. ERP generator patterns were summarized by temporal PCA from reference-free current source density (CSD) waveforms to sharpen 31-channel topographies. Patients showed poorer performance and reduced left inferior parietotemporal P3 source. Build-up of mid-frontal negative slow wave (SW) in controls during item encoding, integration, and active maintenance was absent in patients, whereas a sustained mid-frontal SW sink during the retention interval was comparable across groups. Mid-frontal SW sinks (encoding and retention periods) and posterior SW sinks and sources (encoding only) were related to performance in controls only. Data suggest disturbed processes in a frontal-parietotemporal network in schizophrenia, affecting encoding and early item storage. [source]


    Excitatory purinergic neurotransmission in smooth muscle of guniea-pig taenia caeci

    THE JOURNAL OF PHYSIOLOGY, Issue 3 2005
    Yong Zhang
    Non-adrenergic, non-cholinergic (NANC) inhibitory neurotransmission has been an area of intense interest in gut motor physiology, whereas excitatory NANC neurotransmission has received less attention. In order to further explore excitatory NANC neurotransmission, we performed conventional intracellular recordings from guinea-pig taenia caeci smooth muscle. Tissue was perfused with oxygenated Krebs solution at 35°C and nerve responses evoked by either oral or aboral nerve stimulation (NS) (4 square wave pulses, 0.3 ms duration, 20 Hz). Electrical activity was characterized by slow waves upon which one to three action potentials were superimposed. Oral NS evoked an inhibitory junction potential (IJP) at either the valley or peak of the slow wave. Application of nifedipine (1 ,m) abolished slow waves and action potentials, but membrane potential flunctuations (1,3 mV) and IJPs remained unaffected. Concomitant application of apamin (300 nm), a small-conductance Ca2+ -activated K+ channel blocker, converted the IJP to an EJP that was followed by slow IJP. Further administration of NG -nitro- l -arginine methyl ester (l -NAME, 200 ,m), a nitric oxide synthase inhibitor, abolished the slow IJP without affecting the EJP, implying that the slow IJP is due to nitrergic innervation. The EJP was abolished by tetrodotoxin (1 ,m), but was not significantly affected by atropine (3 ,m) and guanethidine (3 ,m) or hexamethonium (500 ,m). Substance P (SP, 1 ,m) desensitization caused slight attenuation of the EJP, but the EJP was abolished by desensitization with ,,,-methylene ATP (50 ,m), a P2 purinoceptor agonist that is more potent than ATP at the P2X receptor subtype, suramin (100 ,m), a non-selective P2 purinoceptor antagonist, and pyridoxal-phosphate-6-azophenyl-2,,4,-disulphonic acid (PPADS, 100 ,m), a selective P2X purinoceptor antagonist. In contrast, the EJP was unaffected by MRS-2179 (2 ,m), a selective P2Y1 receptor antagonist. Aboral NS evoked an apamin- and l -NAME-sensitive IJP, but virtually no NANC EJP. These data suggest the presence of polarized excitatory purinergic neurotransmission in guinea-pig taenia caeci, which appears to be mediated by P2X purinoceptors, most likely the P2X1 subtype. [source]


    Neural Correlates of Children's Theory of Mind Development

    CHILD DEVELOPMENT, Issue 2 2009
    David Liu
    Young children show significant changes in their mental-state understanding as marked by their performance on false-belief tasks. This study provides evidence for activity in the prefrontal cortex associated with the development of this ability. Event-related brain potentials (ERPs) were recorded as adults (N = 24) and 4-, 5-, and 6-year-old children (N = 44) reasoned about reality and the beliefs of characters in animated vignettes. In adults, a late slow wave (LSW), with a left-frontal scalp distribution, was associated with reasoning about beliefs. This LSW was also observed for children who could correctly reason about the characters' beliefs but not in children who failed false-belief questions. These findings have several implications, including support for the critical role of the prefrontal cortex for theory of mind development. [source]


    Neural Correlates of Face and Object Recognition in Young Children with Autism Spectrum Disorder, Developmental Delay, and Typical Development

    CHILD DEVELOPMENT, Issue 3 2002
    Geraldine Dawson
    This study utilized electroencephalographic recordings to examine whether young children with autism spectrum disorder (ASD) have impaired face recognition ability. High-density brain event-related potentials (ERPs) were recorded to photos of the child's mother's face versus an unfamiliar female face and photos of a favorite versus an unfamiliar toy from children with ASD, children with typical development, and children with developmental delay, all 3 to 4 years of age (N= 118). Typically developing children showed ERP amplitude differences in two components, P400 and Nc, to a familiar versus an unfamiliar face, and to a familiar versus an unfamiliar object. In contrast, children with ASD failed to show differences in ERPs to a familiar versus an unfamiliar face, but they did show P400 and Nc amplitude differences to a familiar versus an unfamiliar object. Developmentally delayed children showed significant ERP amplitude differences for the positive slow wave for both faces and objects. These data suggest that autism is associated with face recognition impairment that is manifest early in life. [source]


    Removing Eye-movement Artifacts from the EEG during the Intracarotid Amobarbital Procedure

    EPILEPSIA, Issue 3 2005
    Weidong Zhou
    Summary:,Purpose: The EEG is often recorded during the intracarotid amobarbital procedure (IAP) to help in the assessment of the spatial extent and the duration of the effect of the drug. In scalp recordings, the EEG is always heavily contaminated with eye movement artifacts as the patient actively performs visual tasks. Methods: Independent component analysis (ICA) is a new technique for blind source separation. In this study, we separated the EEG data recorded during the IAP into independent components using ICA. The EEG signal was reconstructed by excluding the components related to eye movement and eye blinks. Results: EEGs from 10 IAP tests were analyzed. The experimental results indicate that ICA is very efficient at subtracting eye-movement artifacts, while retaining the EEG slow waves and making their interpretation easier. Conclusions: ICA appears to be a generally applicable and effective method for removing ocular artifacts from EEG recordings during IAP, although slow waves and ocular artifacts share similar frequency distributions. [source]


    Angelman Syndrome: Difficulties in EEG Pattern Recognition and Possible Misinterpretations

    EPILEPSIA, Issue 8 2003
    Kette D. Valente
    Summary: Purpose: This study aimed to evaluate the sensitivity of the EEG in Angelman syndrome (AS), to verify the age at onset of suggestive EEGs and to study EEG patterns, analyzing variations and comparing our findings with nomenclature previously used. Methods: Seventy EEG and 15 V-EEGs of 26 patients were analyzed. Suggestive EEG patterns of AS were classified in delta pattern (DP), theta pattern (TP), and posterior discharges (PDs). Generic terms were used to simplify the analysis. Results: Suggestive EEGs were observed in 25 (96.2%) patients. DP occurred in 22 patients with four variants,hypsarrhythmic-like: irregular, high-amplitude, generalized delta activity (DA) with multifocal epileptiform discharges (EDs); slow variant: regular, high-amplitude, generalized DA with rare EDs; ill-defined slow spike-and-wave: regular, high-amplitude, generalized DA with superimposed EDs characterizing a slow wave, with notched appearance; triphasic-like: rhythmic, moderate-amplitude DA over anterior regions with superimposed EDs. TP was observed in eight patients, as generalized or over the posterior regions. PDs were seen in 19 patients as runs of sharp waves or runs of high-amplitude slow waves with superimposed EDs. TP was the only age-related pattern (younger than 8 years) and observed only in patients with deletion. In 15 patients who had an EEG before the clinical diagnosis, 60% had a suggestive tracing. Conclusions: Although some EEG descriptions are not very detailed, and every author describes findings in a slightly different manner, obviously a common denominator must exist. In this context, EEG seems to be a very sensitive method for the diagnosis of AS, offering an opportunity to corroborate this etiologic diagnosis. Conversely, we do not believe that these patterns may be accounted as specific, except for the delta pattern, which seems to be extremely unusual in other syndromes. Other EEG patterns observed in AS, such as theta activity and PDs, occur in a wide variety of disorders. Nonetheless, their importance for the EEG diagnosis of AS is supported by the fact that they are associated with other features and may be helpful in a proper clinical setting. [source]


    Nigrostriatal lesion induces D2-modulated phase-locked activity in the basal ganglia of rats

    EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 7 2007
    Camila L. Zold
    Abstract There is a debate as to what modifications of neuronal activity underlie the clinical manifestations of Parkinson's disease and the efficacy of antiparkinsonian pharmacotherapy. Previous studies suggest that release of GABAergic striatopallidal neurons from D2 receptor-mediated inhibition allows spreading of cortical rhythms to the globus pallidus (GP) in rats with 6-hydroxydopamine-induced nigrostriatal lesions. Here this abnormal spreading was thoroughly investigated. In control urethane-anaesthetized rats most GP neurons were excited during the active part of cortical slow waves (,direct-phase' neurons). Two neuronal populations having opposite phase relationships with cortical and striatal activity coexisted in the GP of 6-hydroxydopamine-lesioned rats. ,Inverse-phase' GP units exhibited reduced firing coupled to striatal activation during slow waves, suggesting that this GP oscillation was driven by striatopallidal hyperactivity. Half of the pallidonigral neurons identified by antidromic stimulation exhibited inverse-phase activity. Therefore, spreading of inverse-phase oscillations through pallidonigral axons might contribute to the abnormal direct-phase cortical entrainment of basal ganglia output described previously. Systemic administration of the D2 agonist quinpirole to 6-hydroxydopamine-lesioned rats reduced GP inverse-phase coupling with slow waves, and this effect was reversed by the D2 antagonist eticlopride. Because striatopallidal hyperactivity was only slightly reduced by quinpirole, other mechanisms might have contributed to the effect of quinpirole on GP oscillations. These results suggest that antiparkinsonian efficacy may rely on other actions of D2 agonists on basal ganglia activity. However, abnormal slow rhythms may promote enduring changes in functional connectivity along the striatopallidal axis, contributing to D2 agonist-resistant clinical signs of parkinsonism. [source]


    Interstitial cells in the vasculature

    JOURNAL OF CELLULAR AND MOLECULAR MEDICINE, Issue 2 2005
    M. I. Harhun
    Abstract Interstitial cells of Cajal are believed to play an important role in gastrointestinal tissues by generating and propagating electrical slow waves to gastrointestinal muscles and/or mediating signals from the enteric nervous system. Recently cells with similar morphological characteristics have been found in the wall of blood vessels such as rabbit portal vein and guinea pig mesenteric artery. These non-contractile cells are characterised by the presence of numerous processes and were easily detected in the wall of the rabbit portal vein by staining with methylene blue or by antibodies to the marker of Interstitial Cells of Cajal c-kit. These vascular cells have been termed "interstitial cells" by analogy with interstitial cells found in the gastrointestinal tract. Freshly dispersed interstitial cells from rabbit portal vein and guinea pig mesenteric artery displayed various Ca2+ -release events from endo/sarcoplasmic reticulum including fast localised Ca2+ transients (Ca2+ sparks) and longer and slower Ca2+ events. Single interstitial cells from the rabbit portal vein, which is a spontaneously active vessel, also demonstrated rhythmical Ca2+ oscillations associated with membrane depolarisations, which suggests that in this vessel interstitial cells may act as pacemakers for smooth muscle cells. The function of interstitial cells from the mesenteric arteries is yet unknown. This article reviews some of the recent findings regarding interstitial cells from blood vessels obtained by our laboratory using electron microscopy, immunohistochemistry, tight-seal patch-clamp recording, and fluorescence confocal imaging techniques. [source]


    Effects of audio stimulation on gastric myoelectrical activity and sympathovagal balance in healthy adolescents and adults

    JOURNAL OF GASTROENTEROLOGY AND HEPATOLOGY, Issue 1 2008
    Dennis D Chen
    Abstract Aim:, The primary aim of this study was to investigate the effects of different audio stimulations on gastric myoelectrical activity and sympathovagal balance in adolescents compared with adults. Methods:, The study was performed in 11 adults and 12 adolescents. Each subject underwent two sessions, one for classical music, and the other for noise. Each session consisted of 30 min of baseline, 30 min of fasting audio stimulation, a test meal, 30 min of fed audio stimulation, and 30 min of recovery. Electrocardiogram and electrogastrogram were both recorded throughout each session. Results:, (i) In the fasting state, both classical music and noise impaired gastric slow wave activity in adolescents. In adults, noise had no effects while classical music moderately improved slow wave rhythmicity. (ii) In the fed state, neither noise nor music had any effects on gastric slow waves. (iii) In the fasting state, both noise and music increased the sympathovagal balance in adolescents; in adults only noise had such an effect. (iv) The test meal increased the sympathovagal balance in all groups. Conclusions:, Gastric slow waves and the sympathovagal balance are more strongly affected by audio stimulation in adolescents than in adults. The test meal normalizes the audio stimulation-induced differences between the groups. [source]