Slope Aspect (slope + aspect)

Distribution by Scientific Domains


Selected Abstracts


Spatial and temporal variation of fire regimes in a mixed conifer forest landscape, Southern Cascades, California, USA

JOURNAL OF BIOGEOGRAPHY, Issue 8 2001
R. Matthew Beaty
Aim In this study, we evaluated the fire-forest mosaic of a mixed conifer forest landscape by testing the hypothesis that pre-fire suppression fire regime parameters vary with species composition (tree species), and environment (i.e. slope aspect, slope position, elevation). Location Our study was conducted in the 1587 ha Cub Creek Research Natural Area (CCRNA), Lassen National Forest, CA, USA. Methods We quantified the return interval, seasonal occurrence, size, rotation period, and severity of fires using dendroecology. Results Slope aspect, potential soil moisture, forest composition, and fire regime parameters in our study area co-vary. Median composite and point fire return intervals (FRI) were longest on higher, cooler, more mesic, north-facing (NF) slopes covered with white fir (Abies concolor), Douglas fir (Pseudotsuga menziesii),white fir, and red fir (A. magnifica),white fir forests, shortest on the dry, south-facing (SF) slopes covered with ponderosa pine (Pinus ponderosa),white fir forests and intermediate on west-facing slopes dominated by white fir,sugar pine (P. lambertiana),incense cedar (Libocedrus decurrens) forests. The spatial pattern for length of fire rotation (FR) was the same as that for FRI. Fires in CCRNA mixed conifer forests occurred mainly (90%) in the dormant season. Size of burns in CCRNA mixed conifer forests were generally small (mean=106 ha), however, during certain drought years widespread fires burned across fuel breaks and spread throughout the watershed. Fire severity was mainly high on upper slopes, low on lower slopes and moderate and low severity on middle slopes. Patterns of fire severity also varied with slope aspect. Fire frequency decreased dramatically in CCRNA after 1905. Conclusions In CCRNA, fire regime parameters [e.g. FRI, fire extent, FR, fire severity] varied widely with species composition, slope aspect and slope position. There was also temporal variation in fire extent with the most widespread fires occurring during drought years. The important contributions of topography and climate to variation in the fire regime indicates that exogenous factors play a key role in shaping the fire-forest structure mosaic and that the fire-forest structure mosaic is more variable, less predictable and less stable than previously thought. Finally, some characteristics of the fire regime (i.e. fire severity, season of burn) in CCRNA are different than those described for other mixed conifer forests and this suggests that there are geographical differences in mixed conifer fire regimes along the Pacific slope. [source]


Post-fire tree establishment patterns at the alpine treeline ecotone: Mount Rainier National Park, Washington, USA

JOURNAL OF VEGETATION SCIENCE, Issue 1 2009
Kirk M. Stueve
Abstract Questions: Does tree establishment: (1) occur at a treeline depressed by fire, (2) cause the forest line to ascend upslope, and/or (3) alter landscape heterogeneity? (4) What abiotic and biotic local site conditions are most important in structuring establishment patterns? (5) Does the abiotic setting become more important with increasing upslope distance from the forest line? Location: Western slopes of Mount Rainier, USA. Methods: We performed classification analysis of 1970 satellite imagery and 2003 aerial photography to delineate establishment. Local site conditions were calculated from a LIDAR-based DEM, ancillary climate data, and 1970 tree locations in a GIS. We used logistic regression on a spatially weighted landscape matrix to rank variables. Results: Considerable establishment after 1970 caused forest line elevation to increase over 150 m in specific locations. Landscape heterogeneity increased with distance from the 1970 forest line. At a broad spatial context, we found establishment was most common near existing trees (0-50 m) and at low elevations (1250-1350 m). Slope aspect (W, NW, N, NE, and E), slope angle (40-60°), and other abiotic factors emerged as important predictors of establishment with increasing upslope distance from the forest line to restricted spatial extents. Conclusions: Favorable climatic conditions likely triggered widespread tree establishment. Readily available seed probably enhanced establishment rates near sexually mature trees, particularly in the less stressful environment at low elevations. The mass effect of nearly ubiquitous establishment in these areas may have obscured the importance of the abiotic setting to restricted spatial extents. Topographic variability apparently produced favorable sites that facilitated opportunistic establishment with increasing upslope distance from the forest line, thereby enabling additional trees to invade the alpine tundra. [source]


Effect of snowpack removal on energy balance, melt and runoff in a small supraglacial catchment

HYDROLOGICAL PROCESSES, Issue 14 2002
Ian C. Willis
Abstract Modelling melt and runoff from snow- and ice-covered catchments is important for water resource and hazard management and for the scientific study of glacier hydrology, dynamics and hydrochemistry. In this paper, a distributed, physically based model is used to determine the effects of the up-glacier retreat of the snowline on spatial and temporal patterns of melt and water routing across a small (0·11 km2) supraglacial catchment on Haut Glacier d'Arolla, Switzerland. The melt model uses energy-balance theory and accounts for the effects of slope angle, slope aspect and shading on the net radiation fluxes, and the effects of atmospheric stability on the turbulent fluxes. The water routing model uses simplified snow and open-channel hydrology theory and accounts for the delaying effects of vertical and horizontal water flow through snow and across ice. The performance of the melt model is tested against hourly measurements of ablation in the catchment. Calculated and measured ablation rates show a high correlation (r2 = 0·74) but some minor systematic discrepancies in the short term (hours). These probably result from the freezing of surface water at night, the melting of the frozen layer in the morning, and subsurface melting during the afternoon. The performance of the coupled melt/routing model is tested against hourly discharge variations measured in the supraglacial stream at the catchment outlet. Calculated and measured runoff variations show a high correlation (r2 = 0·62). Five periods of anomalously high measured discharge that were not predicted by the model were associated with moulin overflow events. The radiation and turbulent fluxes contribute c. 86% and c. 14% of the total melt energy respectively. These proportions do not change significantly as the surface turns from snow to ice, because increases in the outgoing shortwave radiation flux (owing to lower albedo) happen to be accompanied by decreases in the incoming shortwave radiation flux (owing to lower solar incidence angles) and increases in the turbulent fluxes (owing to higher air temperatures and vapour pressures). Model sensitivity experiments reveal that the net effect of snow pack removal is to increase daily mean discharges by c. 50%, increase daily maximum discharges by >300%, decrease daily minimum discharges by c. 100%, increase daily discharge amplitudes by >1000%, and decrease the lag between peak melt rates and peak discharges from c. 3 h to c. 50 min. These changes have important implications for the development of subglacial drainage systems. Copyright © 2002 John Wiley & Sons, Ltd. [source]


Spatial and temporal variation of fire regimes in a mixed conifer forest landscape, Southern Cascades, California, USA

JOURNAL OF BIOGEOGRAPHY, Issue 8 2001
R. Matthew Beaty
Aim In this study, we evaluated the fire-forest mosaic of a mixed conifer forest landscape by testing the hypothesis that pre-fire suppression fire regime parameters vary with species composition (tree species), and environment (i.e. slope aspect, slope position, elevation). Location Our study was conducted in the 1587 ha Cub Creek Research Natural Area (CCRNA), Lassen National Forest, CA, USA. Methods We quantified the return interval, seasonal occurrence, size, rotation period, and severity of fires using dendroecology. Results Slope aspect, potential soil moisture, forest composition, and fire regime parameters in our study area co-vary. Median composite and point fire return intervals (FRI) were longest on higher, cooler, more mesic, north-facing (NF) slopes covered with white fir (Abies concolor), Douglas fir (Pseudotsuga menziesii),white fir, and red fir (A. magnifica),white fir forests, shortest on the dry, south-facing (SF) slopes covered with ponderosa pine (Pinus ponderosa),white fir forests and intermediate on west-facing slopes dominated by white fir,sugar pine (P. lambertiana),incense cedar (Libocedrus decurrens) forests. The spatial pattern for length of fire rotation (FR) was the same as that for FRI. Fires in CCRNA mixed conifer forests occurred mainly (90%) in the dormant season. Size of burns in CCRNA mixed conifer forests were generally small (mean=106 ha), however, during certain drought years widespread fires burned across fuel breaks and spread throughout the watershed. Fire severity was mainly high on upper slopes, low on lower slopes and moderate and low severity on middle slopes. Patterns of fire severity also varied with slope aspect. Fire frequency decreased dramatically in CCRNA after 1905. Conclusions In CCRNA, fire regime parameters [e.g. FRI, fire extent, FR, fire severity] varied widely with species composition, slope aspect and slope position. There was also temporal variation in fire extent with the most widespread fires occurring during drought years. The important contributions of topography and climate to variation in the fire regime indicates that exogenous factors play a key role in shaping the fire-forest structure mosaic and that the fire-forest structure mosaic is more variable, less predictable and less stable than previously thought. Finally, some characteristics of the fire regime (i.e. fire severity, season of burn) in CCRNA are different than those described for other mixed conifer forests and this suggests that there are geographical differences in mixed conifer fire regimes along the Pacific slope. [source]


Fire regimes and forest changes in mid and upper montane forests of the southern Cascades, Lassen Volcanic National Park, California, U.S.A.

JOURNAL OF BIOGEOGRAPHY, Issue 1 2000
A. H. Taylor
Abstract Aim Spatial and temporal variation in fire regime parameters and forest structure were assessed. Location A 2630-ha area of mid- and upper montane forest in Lassen Volcanic National Park (LVNP). Methods Two hypotheses were tested concerned with fire-vegetation relationships in southern Cascades forests: (1) fire regime parameters (return interval, season of burn, fire size, rotation period) vary by forest dominant, elevation and slope aspect; and (2) fire exclusion since 1905 has caused forest structural and compositional changes in both mid- and upper montane forests. The implications of the study for national park management are also discussed. Results Fire regime parameters varied by forest compositional group and elevation in LVNP. Median composite and point fire return intervals were shorter in low elevation Jeffrey pine (Pinus jeffreyi) (JP) (4,6 years, 16 years) and Jeffrey pine,white fir (Abies concolor) (JP-WF) (5,10 years, 22 years) and longer in high elevation red fir (Abies magnifica), western white pine (Pinus monticola) (RF-WWP) forests (9,27 years, 70 years). Median fire return intervals were also shorter on east-facing (6,9 years, 16.3 years) and longer on south- (11 years, 32.5 years) and west-facing slopes (22,28 years, 54-years) in all forests and in each forest composition group. Spatial patterns in fire rotation length were the same as those for fire return intervals. More growing season fires also occurred in JP (33.1%) and JP-WF (17.5%) than in RF-WWP (1.1%) forests. A dramatic decline in fire frequency occurred in all forests after 1905. Conclusions Changes in forest structure and composition occurred in both mid- and upper montane forests due to twentieth-century fire exclusion. Forest density increased in JP and JP-WF forests and white fir increased in JP-WF forests and is now replacing Jeffrey pine. Forest density only increased in some RF-WWP stands, but not others. Resource managers restoring fire to these now denser forests need to burn larger areas if fire is going to play its pre-settlement role in montane forest dynamics. [source]


Probability distributions, vulnerability and sensitivity in Fagus crenata forests following predicted climate changes in Japan

JOURNAL OF VEGETATION SCIENCE, Issue 5 2004
Tetsuya Matsui
Question: How much is the probability distribution of Fagus crenata forests predicted to change under a climate change scenario by the 2090s, and what are the potential impacts on these forests? What are the main factors inducing such changes? Location: The major islands of Japan. Methods: A predictive distribution model was developed with four climatic factors (summer precipitation, PRS; winter precipitation, PRW; minimum temperature of the coldest month, TMC; and warmth index, WI) and five non-climatic factors (topography, surface geology, soil, slope aspect and inclination). A climate change scenario was applied to the model. Results: Areas with high probability (> 0.5) were predicted to decrease by 91%, retreating from the southwest, shrinking in central regions, and expanding northeastwards beyond their current northern limits. A vulnerability index (the reciprocal of the predicted probability) suggests that Kyushu, Shikoku, the Pacific Ocean side of Honshu and southwest Hokkaido will have high numbers of many vulnerable F. crenata forests. The forests with high negative sensitivity indices (the difference between simulated probabilities of occurrence under current and predicted climates) mainly occur in southwest Hokkaido and the Sea of Japan side of northern Honshu. Conclusion: F. crenata forest distributions may retreat from some islands due to a high WI. The predicted northeastward shift in northern Hokkaido is associated with increased TMC and PRS. High vulnerability and negative sensitivity of the forests in southern Hokkaido are due to increased WI. [source]


Present and past old-growth forests of the Lake Tahoe Basin, Sierra Nevada, US

JOURNAL OF VEGETATION SCIENCE, Issue 4 2002
M. Barbour
Hickman (1993) for vascular plants; Furniss & Carolin (1977) for bark beetles; Hansen & Lewis (1997) for pathogens Abstract. We described 38 relictual old-growth stands , with data on the mortality, regeneration, floristic richness, fuel load and disease incidence in our study area in the Tahoe Basin of California and Nevada. The stands are within the lower and upper montane zones (1900,2400 m a.s.l.) and they are rare, occupying < 2% of the land in the Basin's watershed. Correlation matrices and ANOVAs of forest types and conifer species with environmental gradients revealed significant relationships with elevation, distance east of the Sierran crest, slope aspect, annual precipitation, date of complete snow melt, litter depth and degree of soil profile development. Pathogens, parasites and wood-boring insects were present on 23% of living trees; 16% of all trees were dead. We compared these stands to a reconstruction of pre-contact Basin forests and to ecologically analogous old-growth forests of Baja California that have never experienced fire suppression management. Currently, overstorey trees (> 180 yr old) in the Basin stands have ca. 33% cover, 54 m2.ha -1 basal area and 107 individuals.ha -1, values very similar to reconstructions of pre-contact Basin forests and to modern Baja California forests. Understorey trees (60,180 yr old), however, are several times more dense than historic levels and species composition is strongly dominated by A. concolor, regardless of the overstorey composition. The ratio of Pinus: Abies has increased , and the age structure of extant stands predicts that it will continue to increase , from approximately 1:1 in pre-contact time to 1:7 within the next century. Disease incidence and mortality in Baja forests were lower. Although we quantitatively defined current Basin old-growth forests , in terms of stand structure , we realize that our definition will differ from that of both past and future old-growth forests unless management protocols are changed. [source]


Long-term post-fire changes in the northeastern boreal forest of Quebec

JOURNAL OF VEGETATION SCIENCE, Issue 6 2000
Louis De Grandpré
Abstract. Natural dynamics in the boreal forest is influenced by disturbances. Fire recurrence affects community development and landscape diversity. Forest development was studied in the northeastern boreal forest of Quebec. The objective was to describe succession following fire and to assess the factors related to the changes in forest composition and structure. The study area is located in northeastern Quebec, 50 km north of Baie-Comeau. We used the forest inventory data gathered by the Ministère des Ressources naturelles du Québec (MRNQ). In circular plots of 400 m2, the diameter at breast height (DBH) of all stems of tree species greater than 10 cm was recorded and in 40 m2 subplots, stems smaller than 10 cm were measured. A total of 380 plots were sampled in an area of 6000 km2. The fire history reconstruction was done based on historical maps, old aerial photographs and field sampling. A time-since-fire class, a deposit type, slope, slope aspect and altitude were attributed to each plot. Each plot was also described according to species richness and size structure characteristics. Traces of recent disturbance were also recorded in each plot. Changes in forest composition were described using ordination analyses (NMDS and CCA) and correlated with the explanatory variables. Two successional pathways were observed in the area and characterized by the early dominance of intolerant hardwood species or Picea mariana. With time elapsed since the last fire, composition converged towards either Picea mariana, Abies balsamea or a mixture of both species and the size structure of the coniferous dominated stands got more irregular. The environmental conditions varied between stands and explained part of the variability in composition. Their effect tended to decrease with increasing time elapsed since fire, as canopy composition was getting more similar. Gaps may be important to control forest dynamics in old successional communities. [source]


The impact of changing olive cultivation practices on the ground flora of olive groves in the Messara and Psiloritis regions, Crete, Greece

LAND DEGRADATION AND DEVELOPMENT, Issue 3 2006
H. D. Allen
Abstract This paper examines the impact that different olive cultivation practices have on the nature of the ground flora of olive groves in the region of the Psiloritis massif and Messara Plain in central and southern Crete, Greece. In lower, flatter areas there are areas of both traditional and intensive forms of olive cultivation. In more marginal, upland areas there are traditional terraced olive groves, some of which are being abandoned. The relationship between the vegetation composition of the ground flora and environmental variables was established, by means of TWINSPAN® and ordination analysis, using survey data from nineteen sites across the region. Four vegetation communities are identified: olive with herbaceous taxa; olive with sclerophyllous shrub taxa; and two forms of sclerophyllous shrub communities. Ordination results indicate that environmental variables, such as soil characteristics, slope aspect and slope angle, explain about 60,per,cent of the species,environment relationships. The remaining variation in species composition is interpreted to be the result of different cultivation practices. The implications for land degradation are examined, in particular the changes in vegetation diversity of both intensive and semi-abandoned olive groves, the potential for increased soil erosion, and the risk of fire as a result of increased fuel loading as flammable shrubs invade abandoned terraces. Intensification of olive cultivation in Crete, and across the Mediterranean, has been encouraged by subsidies from the European Union leading to rapid landscape change. Thus there is a need to monitor changes in olive cultivation practices both at the local scale, by means of ground-based fieldwork, and at landscape and regional scales, by means of remote sensing. Copyright © 2006 John Wiley & Sons, Ltd. [source]


Using farmers' knowledge for defining criteria for land qualities in biophysical land evaluation

LAND DEGRADATION AND DEVELOPMENT, Issue 6 2001
I. Messing
Abstract The objective of this paper is to present a way of complementing empirical results with farmers' perceptions in defining limiting biophysical land properties in a land suitability evaluation using the FAO framework methodology. The farmers' perceptions were identified using rapid and participatory rural appraisal (RRA/PRA) tools. The study catchment, having a semiarid continental climate and located on the Loess Plateau in northern China, covered an area of 3.5 km2. Most of the land users were dependent on subsistence agriculture. There were important topographic variations in the catchment and arable cropping on steep slopes brought about degradation of land due to water erosion. The biophysical monitoring, soil survey and RRA/PRA survey, carried out one year prior to the present investigation, supplied the data needed for identification of preliminary limiting land properties and land evaluation units. The land properties that needed further investigation in the present study were slope aspect, soil workability, flooding hazard and farmers' criteria on choice of land-use type. The farmers were able to give a comprehensive picture of the spatial and temporal variation and the importance for land-use options of the land properties concerned, and thereby complement the information gained from empirical results (measurements). In order to guarantee good production for dry as well as wet years, both south- and north-facing sites were chosen for most crops, and the slope aspect did not need to be differentiated in the final land suitability evaluation for arable crops. Grassland, however, was considered to be more suitable than woodland on south-facing sites. Hard soil layers were found to be important, since they affected soil workability and erosion negatively, giving slightly reduced suitability for the land units in which they occurred. Flooding events affecting crops on alluvial soils negatively were considered to occur once every 5 to 10 years, which is considered to be a low rate, so this property was therefore not included in the final suitability evaluation. Copyright © 2001 John Wiley & Sons, Ltd. [source]


Predictors of plant phenology in a diverse high-latitude alpine landscape: growth forms and topography

JOURNAL OF VEGETATION SCIENCE, Issue 5 2009
Marianne Iversen
Abstract Question: Different plant growth forms may have distinctly different functioning in ecosystems. Association of phenological patterns with growth form will therefore help elucidate the role of phenology in an ecosystem. We ask whether growth forms of common vascular plants differ in terms of vegetative and flowering phenology, and if such phenological differences are consistent across environmental gradients caused by landscape-scale topography. Location: A high-latitude alpine landscape in Finnmark County, Norway (70°N). Methods: We assessed vegetative and flowering phenology repeatedly in five growth forms represented by 11 common vascular plant species across an altitudinal gradient and among differing slope aspects. Results: Species phenology clustered well according to growth form, and growth form strongly explained variation in both flowering and vegetative phenology. Altitude and aspect were poor predictors of phenological variation. Vegetative phenology of the growth forms, ranked from slowest to fastest, was in the order evergreen shrubs [source]