Home About us Contact | |||
Skull Bones (skull + bone)
Selected AbstractsThe late Pleistocene horned crocodile Voay robustus (Grandidier & Vaillant, 1872) from Madagascar in the Museum für Naturkunde BerlinFOSSIL RECORD-MITTEILUNGEN AUS DEM MUSEUM FUER NATURKUNDE, Issue 1 2009Constanze Bickelmann Abstract Crocodylian material from late Pleistocene localities around Antsirabe, Madagascar, stored in the collection of the Museum für Naturkunde, Berlin, was surveyed. Several skeletal elements, including skull bones, vertebrae, ribs, osteoderms, and limb bones from at least three large individuals could be unambiguously assigned to the genus Voay Brochu, 2007. Furthermore, the simultaneous occurrence of Voay robustus Grandidier & Vaillant, 1872 and Crocodylus niloticus Laurenti, 1768 in Madagascar is discussed. Voay robustus and Crocodylus niloticus are systematically separate but similar in stature and size, which would make them direct rivals for ecological resources. Our hypothesis on the extinction of the species Voay, which was endemic to Madagascar, suggests that C. niloticus invaded Madagascar only after V. robustus became extinct. (© 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] Evolution of cranial development and the role of neural crest: insights from amphibiansJOURNAL OF ANATOMY, Issue 5 2005James Hanken Abstract Contemporary studies of vertebrate cranial development document the essential role played by the embryonic neural crest as both a source of adult tissues and a locus of cranial form and patterning. Yet corresponding and basic features of cranial evolution, such as the extent of conservation vs. variation among species in the contribution of the neural crest to specific structures, remain to be adequately resolved. Investigation of these features requires comparable data from species that are both phylogenetically appropriate and taxonomically diverse. One key group are amphibians, which are uniquely able to inform our understanding of the ancestral patterns of ontogeny in fishes and tetrapods as well as the evolution of presumably derived patterns reported for amniotes. Recent data support the hypothesis that a prominent contribution of the neural crest to cranial skeletal and muscular connective tissues is a fundamental property that evolved early in vertebrate history and is retained in living forms. The contribution of the neural crest to skull bones appears to be more evolutionarily labile than that of cartilages, although significance of the limited comparative data is difficult to establish at present. Results underline the importance of accurate and reliable homology assessments for evaluating the contrasting patterns of derivation reported for the three principal tetrapod models: mouse, chicken and frog. [source] Earliest Mineral and Matrix Changes in Force-Induced Musculoskeletal Disease as Revealed by Raman Microspectroscopic Imaging,JOURNAL OF BONE AND MINERAL RESEARCH, Issue 1 2004Catherine P Tarnowski Abstract Craniosynostosis, premature fusion of the skull bones at the sutures, is the second most common human birth defect in the skull. Raman microspectroscopy was used to examine the composition, relative amounts, and locations of the mineral and matrix produced in mouse skulls undergoing force-induced craniosynostosis. Raman imaging revealed decreased relative mineral content in skulls undergoing craniosynostosis compared with unloaded specimens. Introduction: Raman microspectroscopy, a nondestructive vibrational spectroscopic technique, was used to examine the composition, relative amounts, and locations of the mineral and matrix produced in mouse skulls undergoing force-induced craniosynostosis. Craniosynostosis, premature fusion of the skull bones at the sutures, is the second most common birth defect in the face and skull. The calvaria, or flat bones that comprise the top of the skull, are most often affected, and craniosynostosis is a feature of over 100 human syndromes and conditions. Materials and Methods: Raman images of the suture, the tips immediately adjacent to the suture (osteogenic fronts), and mature parietal bones of loaded and unloaded calvaria were acquired. Images were acquired at 2.6 × 2.6 ,m spatial resolution and ranged in a field of view from 180 × 210 ,m to 180 × 325 ,m. Results and Conclusions: This study found that osteogenic fronts subjected to uniaxial compression had decreased relative mineral content compared with unloaded osteogenic fronts, presumably because of new and incomplete mineral deposition. Increased matrix production in osteogenic fronts undergoing craniosynostosis was observed. Understanding how force affects the composition, relative amounts, and location of the mineral and matrix provides insight into musculoskeletal disease in general and craniosynostosis in particular. This is the first report in which Raman microspectroscopy was used to study musculoskeletal disease. These data show how Raman microspectroscopy can be used to study subtle changes that occur in disease. [source] Brief communication: Evidence bearing on the status of Homo habilis at Olduvai GorgeAMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY, Issue 3 2008Randall L. Susman Abstract Students of the early hominin career have debated the status of Homo habilis since its discovery in 1960. Today discussion centers on which specimens should be included in the species and what constitutes the holotype. Recent reviews of early Homo suggest that the Olduvai Hominid 8 foot may sample Paranthropus while the OH 7 skull bones, mandible, and hand sample H. habilis. Moreover, some suggest that while H. habilis in Middle Bed I at Olduvai is craniodentally Homo -like, the postcranial skeleton of H. habilis is more like that of Australopithecus. Evidence presented here indicates not only that OH 7 and OH 8 represent H. habilis but also that they come from a single individual. The association of OH 35 with OH 7 and OH 8 is less certain. Morphological, pathological, and taphonomic evidence favors the inclusion of OH 35 in the holotype. However, stratigraphic evidence suggests that OH 35 and OH 8 are not coterminous. With or without OH 35, the holotype of H. habilis ranks as one of the most complete early hominin skeletons and the most complete and functionally informative specimen of early Homo. Am J Phys Anthropol, 2008. © 2008 Wiley-Liss, Inc. [source] |