Skeletal Disease (skeletal + disease)

Distribution by Scientific Domains


Selected Abstracts


Morphologic changes associated with functional adaptation of the navicular bone of horses

JOURNAL OF ANATOMY, Issue 5 2007
V. A. Bentley
Abstract Failure of functional adaptation to protect the skeleton from damage is common and is often associated with targeted remodeling of bone microdamage. Horses provide a suitable model for studying loading-related skeletal disease because horses are physically active, their exercise is usually regulated, and adaptive failure of various skeletal sites is common. We performed a histologic study of the navicular bone of three groups of horses: (1) young racing Thoroughbreds (n = 10); (2) young unshod ponies (n = 10); and (3) older horses with navicular syndrome (n = 6). Navicular syndrome is a painful condition that is a common cause of lameness and is associated with extensive remodeling of the navicular bone; a sesamoid bone located within the hoof which articulates with the second and third phalanges dorsally. The following variables were quantified: volumetric bone mineral density; cortical thickness (Ct.Th); bone volume fraction, microcrack surface density; density of osteocytes and empty lacunae; and resorption space density. Birefringence of bone collagen was also determined using circularly polarized light microscopy and disruption of the lacunocanalicular network was examined using confocal microscopy. Remodeling of the navicular bone resulted in formation of transverse secondary osteons orientated in a lateral to medial direction; bone collagen was similarly orientated. In horses with navicular syndrome, remodeling often led to the formation of intracortical cysts and development of multiple tidemarks at the articular surface. These changes were associated with high microcrack surface density, low bone volume fraction, low density of osteocytes, and poor osteocyte connectivity. Empty lacunae were increased in Thoroughbreds. Resorption space density was not increased in horses with navicular syndrome. Taken together, these data suggest that the navicular bone may experience habitual bending across the sagittal plane. Consequences of cumulative cyclic loading in horses with navicular syndrome include arthritic degeneration of adjacent joints and adaptive failure of the navicular bone, with accumulation of microdamage and associated low bone mass, poor osteocyte connectivity, and low osteocyte density, but not formation of greater numbers of resorption spaces. [source]


Oropharyngeal Skeletal Disease Accompanying High Bone Mass and Novel LRP5 Mutation,,

JOURNAL OF BONE AND MINERAL RESEARCH, Issue 5 2005
Michael R Rickels
Abstract Gain-of-function mutation in the gene encoding LRP5 causes high bone mass. A 59-year-old woman carrying a novel LRP5 missense mutation, Arg154Met, manifested skeletal disease affecting her oropharynx as well as dense bones, showing that exuberant LRP5 effects are not always benign. Introduction: Gain-of-function mutation (Gly171Val) of LDL receptor-related protein 5 (LRP5) was discovered in 2002 in two American kindreds with high bone mass and benign phenotypes. In 2003, however, skeletal disease was reported for individuals from the Americas and Europe carrying any of six novel LRP5 missense mutations affecting the same LRP5 protein domain. Furthermore, in 2004, we described a patient with neurologic complications from dense bones and extensive oropharyngeal exostoses caused by the Gly171Val defect. Materials and Methods: A 59-year-old woman was referred for dense bones. Three years before, mandibular buccal and lingual exostoses (osseous "tori") were removed because of infections from food trapping between the teeth and exostoses. Maxillary buccal and palatal exostoses were asymptomatic. Radiographic skeletal survey showed marked thickening of the skull base and diaphyses of long bones (endosteal hyperostosis). BMD Z scores assessed by DXA were +8.5 and +8.7 in the total hip and L1 -L4 spine (both ,195% average control), respectively. LRP5 mutation analysis was carried out for the LRP5 domain known to cause high bone mass. Results: Biochemical evaluation excluded most secondary causes of dense bones, and male-to-male transmission in her family indicated autosomal dominant inheritance. PCR amplification and sequencing of LRP5 exons 2-4 and adjacent splice sites revealed heterozygosity for a new LRP5 missense mutation, Arg154Met. Conclusions: LRP5 Arg154Met is a novel defect that changes the same first ",-propeller" module as the eight previously reported LRP5 gain-of-function missense mutations. Arg154Met alters a region important for LRP5 antagonism by dickkopf (Dkk). Therefore, our patient's extensive oropharyngeal exostoses and endosteal hyperostosis likely reflect increased Wnt signaling and show that exuberant LRP5 effects are not always benign. [source]


Treatment of Idiopathic Hyperphosphatasia With Intensive Bisphosphonate Therapy

JOURNAL OF BONE AND MINERAL RESEARCH, Issue 5 2004
Tim Cundy MD
Abstract In a family with IH, a rare high turnover bone disease, two older siblings were wheelchair-bound with severe skeletal deformity by age 15. Their youngest affected sibling was treated intensively with intravenous bisphosphonates for 3 years. The treatment was well tolerated and prevented the development of deformity and disability. Introduction: Idiopathic hyperphosphatasia (IH, also known as juvenile Paget's disease) is a rare genetic bone disease characterized by very high bone turnover and progressive bony deformity. Inhibitors of bone resorption have been used to suppress bone turnover in the short term, but there is no published data on long-term efficacy. Materials and Methods: An 11-year-old girl with IH, who had two severely affected older siblings, presented with progressive deformity and deafness and long bone fractures. Conventional pediatric doses of pamidronate had failed to prevent clinical deterioration or suppress bone turnover completely. Intensive bisphosphonate therapy (frequent 5-mg ibandronate infusions) was given to try and arrest progression of the skeletal disease. Growth and development, pure tone audiometry, biochemistry, radiology, densitometry (DXA), and bone histology were monitored. Results: A total of 45 mg ibandronate was given over 3 years until skeletal maturity was reached (20, 15, and 10 mg for years 1,3, respectively). Ibandronate treatment was well tolerated, and biochemical markers of bone turnover suppressed to within the age-appropriate normal range There was some progression of her thoracic kyphosis, but she had no further fractures and remained mobile and active at an age when her siblings had become wheelchair-bound. A significant recovery of hearing (p < 0.01) was documented, particularly at low frequencies. Radiographs showed improvement in spinal osteoporosis and cortical bone dimensions and arrest of progressive acetabular protrusion. Areal bone density increased substantially (lumbar spine z-score from ,2.2 to + 1.8). Tetracycline-labeled bone biopsy specimens were taken before and after 18 months of intensive treatment. The second biopsy showed suppression of bone turnover and a doubling of trabecular thickness, with no mineralization defect, and no osteopetrosis. Conclusions: Intensive bisphosphonate treatment prevented the development of deformity and disability and improved hearing in this child with IH. The dose of bisphosphonate, which is substantially greater than is usually used in pediatric bone disease, had no adverse effects, in particular on bone mineralization. [source]


Preonset Studies of Spondyloepiphyseal Dysplasia Tarda Caused by a Novel 2-Base Pair Deletion in SEDL Encoding Sedlin,

JOURNAL OF BONE AND MINERAL RESEARCH, Issue 12 2001
Steven Mumm
Abstract Spondyloepiphyseal dysplasia tarda (SEDT), an X-linked recessive skeletal disorder, presents with disproportionate short stature and "barrel-chest" deformity in affected (hemizygous) adolescent boys. In four reported families to date, mutations in a gene designated SEDL (spondyloepiphyseal dysplasia late) cosegregate with SEDT. We diagnosed SEDT in a short-stature, kyphotic 15-year-old boy because of his characteristic vertebral malformations. Clinical manifestations of SEDT were evident in at least four previous generations. A novel 2-base pair (bp) deletion in exon 5 of SEDL was found in the propositus by polymerase chain reaction (PCR) amplification and sequencing of all four coding exons. The mutation ATdel241-242 cosegregated with the kindred's skeletal disease. The deletion is adjacent to a noncanonical splice site for exon 5 but does not alter splicing. Instead, it deletes 2 bp from the coding sequence, causing a frameshift. A maternal aunt and her three young sons were investigated subsequently. Radiographs showed subtle shaping abnormalities of her pelvis and knees, suggesting heterozygosity. X-rays of the spine and pelvis of her 8-year-old son revealed characteristic changes of SEDT, but her younger sons (aged 6 years and 3 years) showed no abnormalities. SEDL analysis confirmed that she and only her eldest boy had the 2-bp deletion. Molecular testing of SEDL enables carrier detection and definitive diagnosis before clinical or radiographic expression of SEDT. Although there is no specific treatment for SEDT, preexpression molecular testing of SEDL could be helpful if avoiding physical activities potentially injurious to the spine and the joints proves beneficial. [source]


Role of TIEG1 in biological processes and disease states

JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 3 2007
Malayannan Subramaniam
Abstract A novel TGF, Inducible Early Gene-1 (TIEG1) was discovered in human osteoblast (OB) cells by our laboratory. Over the past decade, a handful of laboratories have revealed a multitude of organismic, cellular, and molecular functions of this gene. TIEG1 is now classified as a member of the 3 zinc finger family of Krüppel-like transcription factors (KLF10). Other closely related factors [TIEG2 (KLF11) and TIEG3/TIEG2b] have been reported and are briefly compared. As described in this review, TIEG1 is shown to play a role in regulating estrogen and TGF, actions, the latter through the Smad signaling pathway. In both cases, TIEG1 acts as an inducer or repressor of gene transcription to enhance the TGF,/Smad pathway, as well at other signaling pathways, to regulate cell proliferation, differentiation, and apoptosis. This review outlines TIEG1's molecular functions and roles in skeletal disease (osteopenia/osteoporosis), heart disease (hypertrophic cardiomyopathy), and cancer (breast and prostate). J. Cell. Biochem. 102: 539,548, 2007. © 2007 Wiley-Liss, Inc. [source]


The underrecognized progressive nature of N370S Gaucher disease and assessment of cancer risk in 403 patients,

AMERICAN JOURNAL OF HEMATOLOGY, Issue 4 2009
Tamar H. Taddei
Mutations in GBA1 gene that encodes lysosomal glucocerebrosidase result in Type 1 Gaucher Disease (GD), the commonest lysosomal storage disorder; the most prevalent disease mutation is N370S. We investigated the heterogeneity and natural course of N370S GD in 403 patients. Demographic, clinical, and genetic characteristics of GD at presentation were examined in a cross-sectional study. In addition, the relative risk (RR) of cancer in patients compared with age-, sex-, and ethnic-group adjusted national rates of cancer was determined. Of the 403 patients, 54% of patients were homozygous (N370S/N370S) and 46% were compound heterozygous for the N370S mutation (N370S/other). The majority of N370S/N370S patients displayed a phenotype characterized by late onset, predominantly skeletal disease, whereas the majority of N370S/other patients displayed early onset, predominantly visceral/hematologic disease, P < 0.0001. There was a striking increase in lifetime risk of multiple myeloma in the entire cohort (RR 25, 95% CI 9.17,54.40), mostly confined to N370S homozygous patients. The risk of other hematologic malignancies (RR 3.45, 95% CI 1.49,6.79), and overall cancer risk (RR 1.80, 95% CI 1.32,2.40) was increased. Homozygous N370S GD leads to adult-onset progressive skeletal disease with relative sparing of the viscera, a strikingly high risk of multiple myeloma, and an increased risk of other cancers. High incidence of gammopathy suggests an important role of the adaptive immune system in the development of GD. Adult patients with GD should be monitored for skeletal disease and cancers including multiple myeloma. Am. J. Hematol., 2009. © 2009 Wiley-Liss, Inc. [source]


Zoledronic acid delays the onset of skeletal-related events and progression of skeletal disease in patients with advanced renal cell carcinoma

CANCER, Issue 5 2003
Allan Lipton M.D.
Abstract BACKGROUND The objective of this study was to assess the efficacy and safety of zoledronic acid in patients with bone metastases secondary to renal cell carcinoma (RCC). METHODS A retrospective subset analysis of patients with RCC enrolled in a multicenter, randomized, placebo-controlled study of zoledronic acid was performed. Patients were randomized to receive zoledronic acid (4 or 8 mg as a 15-minute infusion) or placebo with concomitant antineoplastic therapy every 3 weeks for 9 months. The primary efficacy analysis was the proportion of patients with one or more skeletal-related events (SREs), which were defined as pathologic fracture, spinal cord compression, radiation therapy, or surgery to bone. Secondary analyses included time to first SRE, skeletal morbidity rate (events per year), disease progression, and multiple event analysis. RESULTS In this subset of 74 patients with RCC, zoledronic acid (4 mg) was found to significantly reduce the proportion of patients with an SRE (37% vs. 74% for placebo; P = 0.015). Similarly, zoledronic acid significantly reduced the mean skeletal morbidity rate (2.68 vs. 3.38 for placebo; P = 0.014) and extended the time to the first event (median not reached vs. 72 days for placebo; P = 0.006). A multiple event analysis demonstrated that the risk of developing an SRE was reduced by 61% compared with placebo (hazard ratio of 0.394; P = 0.008). The median time to progression of bone lesions was significantly longer for patients who were treated with zoledronic acid (P = 0.014 vs. placebo). Zoledronic acid appeared to be well tolerated; the most common adverse events in all treatment groups included bone pain, nausea, anemia, and emesis. CONCLUSIONS Zoledronic acid (4 mg as a 15-minute infusion) demonstrated significant clinical benefit in patients with bone metastases from RCC, suggesting that further investigation of zoledronic acid in this patient population is warranted. Cancer 2003;98:962,9. © 2003 American Cancer Society. DOI 10.1002/cncr.11571 [source]


The effect of enzyme replacement therapy on bone crisis and bone pain in patients with type 1 Gaucher disease

CLINICAL GENETICS, Issue 3 2007
J Charrow
The effect of enzyme replacement therapy (ERT) on bone crisis and bone pain was investigated in patients with Gaucher disease (GD) type 1 followed over 4 years. Data from the International Collaborative Gaucher Group Gaucher Registry were used. Only patients with bone crisis and/or bone pain data for 1 year prior to ERT, and for each of 3 years after the start of ERT, were included. Bone crises were reported in 17% of patients during the year before starting ERT. The frequencies of bone crises decreased to 5%, <1% and 3% for 1, 2, and 3 years after initiation of treatment, respectively (p < 0.0001). Bone pain followed a similar pattern of response. Bone pain was reported in 49% of patients the year before treatment and decreased to 30% in the first year, 29% in the second year, and 30% in the third year of ERT (p < 0.0001). ERT is associated with a reduction in bone crisis and bone pain in patients with GD type 1 . This study shows that significant improvements in symptoms of skeletal disease are achievable clinical outcomes and treatment goals in GD type 1. [source]


Pharmacologic profile of zoledronic acid: A highly potent inhibitor of bone resorption

DRUG DEVELOPMENT RESEARCH, Issue 4 2002
Jonathan R. Green
Abstract Bisphosphonates are effective in treating benign and malignant skeletal diseases characterized by enhanced osteoclastic bone resorption (i.e., osteoporosis, Paget's disease, tumor-induced osteolysis). The nitrogen-containing bisphosphonate pamidronate is currently the standard treatment for hypercalcemia of malignancy (HCM) and skeletal complications of bone metastases. Zoledronic acid, a novel nitrogen-containing bisphosphonate with an imidazole substituent, has demonstrated more potent inhibition of osteoclast-mediated bone resorption than all other bisphosphonates, including pamidronate, in both in vitro and in vivo preclinical models. Zoledronic acid inhibited ovariectomy-induced bone loss in adult monkeys and rats, and long-term treatment prevented skeletal turnover and subsequent bone loss, reduced cortical porosity, and increased mechanical strength. Zoledronic acid also significantly inhibited bone loss associated with arthritis, bone metastases, and prosthesis loosening. The increased potency of zoledronic acid vs. pamidronate has been demonstrated clinically: zoledronic acid (4 or 8 mg iv) was superior to pamidronate (90 mg iv) in normalizing corrected serum calcium in patients with HCM. In patients with bone metastases, low doses of zoledronic acid (, 2 mg) suppressed bone resorption markers , 50% below baseline, whereas pamidronate 90 mg yielded only 20 to 30% suppression. Importantly, the increased potency of zoledronic acid is not associated with an increased incidence of local (bone) or systemic adverse events. Zoledronic acid does not impair bone mineralization and, compared with pamidronate, has a greater renal and intestinal tolerability therapeutic index. Thus, based on preclinical assays and clinical data, zoledronic acid is the most potent bisphosphonate tested to date. Given its potency and excellent safety profile, zoledronic acid is now poised to become the new standard of treatment for HCM and metastatic bone disease. Drug Dev. Res. 55:210,224, 2002. © 2002 Wiley-Liss, Inc. [source]


Bone marrow-derived mesenchymal stem cells for regenerative medicine in craniofacial region

ORAL DISEASES, Issue 6 2006
M Miura
The craniofacial region contains many specified tissues including bone, cartilage, muscle, blood vessels and neurons. Defect or dysfunction of the craniofacial tissue after post-cancer ablative surgery, trauma, congenital malformations and progressive deforming skeletal diseases has a huge influence on the patient's life. Therefore, functional reconstruction of damaged tissues is highly expected. Bone marrow-derived mesenchymal stem cells (BMMSCs) are one of the most well characterized postnatal stem cell populations, and considered to be utilized for cell-based clinical therapies. Here, the current understanding and the potential applications in craniofacial tissue regeneration of BMMSCs are reviewed, and the current limitations and drawbacks are also discussed. [source]