Skeletal Abnormalities (skeletal + abnormality)

Distribution by Scientific Domains


Selected Abstracts


A case of nevus comedonicus syndrome associated with neurologic and skeletal abnormalities

INTERNATIONAL JOURNAL OF DERMATOLOGY, Issue 10 2001
Young-Joon Seo MD
A 12-year-old male was referred to us with recurrent pus discharge from tender nodules on the right axilla dating from the neonatal period. The nodules were black, characterized by scarring with dilated follicular openings and there were black papules filled with comedo-like keratin plugs in both axillae. Physical examination revealed a bowing deformity of the right third finger and retardation in language ability. The patient was referred to the Departments of Neurology and Orthopedics in Chungnam National University Hospital, Korea. Histologic examination of one of the black comedo-like lesions showed a bulbous and dilated infundibulum that contained laminated keratin, indicating a diagnosis of nevus comedonicus. A CT scan of the brain revealed dysgenesis of the corpus callosum. The IQ (intelligence quotient) score of the patient, measured by the Korean Wechsler Intelligence Scale for Children-Revised, was 94. The only difficulty noted for ordinary life was learning language. A radiograph of the right hand revealed hyperextension and an ulnar drift deformity of the right middle finger. Corrective osteotomy with external fixation and an iliac bone autograft were performed. Intermittent neurologic follow-up visits were ordered for the noted language deficit. At present the patient only exhibits difficulty in calculation. Oral antibiotics were administered to the skin lesions on occasion for secondary infections and inflammation of the cysts and comedones. Extraction of the comedones was performed as needed. [source]


Studies on the appearance of skeletal anomalies in red porgy: effect of culture intensiveness, feeding habits and nutritional quality of live preys

JOURNAL OF APPLIED ICHTHYOLOGY, Issue 2 2010
M. S. Izquierdo
Summary Despite the great interest of red porgy as a new species for Mediterranean aquaculture, its commercial production is constrained by the high incidence of skeletal deformities occurring in this species under culture conditions. Several studies have been conducted to better understand the origin of these anomalies in this species, using different system intensiveness, rotifers enrichment products or rotifers docosahexaenoic acid content. The first study showed that culture intensification increased the number of fish with an extra vertebrae, what was probably related to the different nutritional quality of live preys employed in each treatment, since water temperature, salinity and genetic background were identical for the different batches of fish studied. Total incidence of skeletal abnormalities was higher in the intensive system, particularly cranial abnormalities and kyphosis in the cephalic vertebrae. In both rearing systems the most common skeletal anomalies were vertebral column disorders, lordosis and fused vertebrae, their localization along the column being affected by the culture intensiveness. Rotifer enrichment, predominantly its docosahexaenoic acid content significantly affected deformities occurrence. A marked positive effect of rotifer docosahexaenoic acid content was found on larval survival. X-ray studies denoted elevated levels of bone abnormalities associated, in both trials, to low docosahexaenoic acid content in live preys. Among different anomalies, the presence of fused vertebrae was the most frequent deformity for both rearing trials. A 50% reduction in the number of deformed fish for each type of deformity was obtained when the larvae were fed higher docosahexaenoic acid levels, denoting the important role of this fatty acid in bone development. Further studies are needed to elucidate the importance of essential fatty acids on the development of bone deformities in fish, since the functions of these fatty acids differ among them and can lead to very different effects in fish metabolism, including bone formation. [source]


The involvement of human RECQL4 in DNA double-strand break repair

AGING CELL, Issue 3 2010
Dharmendra Kumar Singh
Summary Rothmund,Thomson syndrome (RTS) is an autosomal recessive hereditary disorder associated with mutation in RECQL4 gene, a member of the human RecQ helicases. The disease is characterized by genomic instability, skeletal abnormalities and predisposition to malignant tumors, especially osteosarcomas. The precise role of RECQL4 in cellular pathways is largely unknown; however, recent evidence suggests its involvement in multiple DNA metabolic pathways. This study investigates the roles of RECQL4 in DNA double-strand break (DSB) repair. The results show that RECQL4-deficient fibroblasts are moderately sensitive to ,-irradiation and accumulate more ,H2AX and 53BP1 foci than control fibroblasts. This is suggestive of defects in efficient repair of DSB's in the RECQL4-deficient fibroblasts. Real time imaging of live cells using laser confocal microscopy shows that RECQL4 is recruited early to laser-induced DSBs and remains for a shorter duration than WRN and BLM, indicating its distinct role in repair of DSBs. Endogenous RECQL4 also colocalizes with ,H2AX at the site of DSBs. The RECQL4 domain responsible for its DNA damage localization has been mapped to the unique N-terminus domain between amino acids 363,492, which shares no homology to recruitment domains of WRN and BLM to the DSBs. Further, the recruitment of RECQL4 to laser-induced DNA damage is independent of functional WRN, BLM or ATM proteins. These results suggest distinct cellular dynamics for RECQL4 protein at the site of laser-induced DSB and that it might play important roles in efficient repair of DSB's. [source]


Giant Axonal Neuropathy Locus Refinement To A < 590 KB Critical Interval

JOURNAL OF THE PERIPHERAL NERVOUS SYSTEM, Issue 1 2001
L Cavalier
Giant axonal neuropathy (GAN) is a rare autosomal recessive neurodegenerative disorder, characterised clinically by the development of chronic distal polyneuropathy during childhood, mental retardation, kinky or curly hair, skeletal abnormalities and, ultrastructurally, by axons in the central and peripheral nervous systems distended by masses of tightly woven neurofilaments. We recently localised the CAN locus in 16q24.1 to a 5-cM interval between the D16S507 and D16S511 markers by homozygosity mapping in three consanguineous Tunisian families. We have now established a contig-based physical map of the region comprising YACs and BACs where we have placed four genes, ten ESTs, three STSs and two additional microsatellite markers, and where we have identified six new SSCP polymorphisms and six new microsatellite markers. Using these markers, we have refined the position of our previous flanking recombinants. We also identified a shared haplotype between two Tunisian families and a small region of homozygosity in a Turkish family with distant consanguinity, both suggesting the occurrence of historic recombinations and supporting the conclusions based on the phase-known recombinations. Taken together, these results allow us to establish a transcription map of the region, and to narrow down the GAN position to a < 590 kb critical interval, an important step toward the identification of the defective gene. [source]


Hyper IgE (Job's) syndrome: a primary immune deficiency with oral manifestations

ORAL DISEASES, Issue 1 2009
AF Freeman
Autosomal dominant hyper IgE (HIES or Job's) syndrome is a rare primary immune deficiency characterized by eczema, recurrent skin and lung infections, extremely elevated serum IgE, and a variety of connective tissue and skeletal abnormalities. Individuals with HIES share a characteristic facial appearance and many oral manifestations including retained primary dentition, a high arched palate, variations of the oral mucosa and gingiva, and recurrent oral candidiasis. Mutations in STAT3 account for the majority, if not all, of the cases of autosomal dominant HIES, but the pathogenesis of the many varied features remains poorly understood. In this review, we discuss the clinical phenotype of HIES including immunologic and non-immunologic features, the genetics of HIES, and treatment. [source]


Five Fanconi anemia patients with unusual organ pathologies

AMERICAN JOURNAL OF HEMATOLOGY, Issue 1 2004
Selma Unal
Abstract Fanconi anemia (FA) is a rare autosomal recessive disorder that presents with variable organ abnormalities, progressive cytopenia, and susceptibility to the development of several malignancies. Although some of the organ pathologies such as microcephaly, microphthalmia, skin dyspigmentation, urogenital system involvement, and radial ray skeletal abnormalities are relatively common, there are some other abnormalities that are rarely associated with the disease [Alter BP. In: Nathan DG, Oski FA, editors. Hematology of infancy and childhood. Philadelphia: Saunders; 2003. p 259,273]. In this paper, five cases of unrelated FA patients with unusual organ pathologies, including chronic obstructive lung disease, lipodystrophy, Sprengel's deformity, diaphragmatic hernia, and inflammatory linear verrucous epidermal nevus (ILVEN) are presented. Recognition of unusual pathologies associated with FA is important in order to improve our understanding of the relationship between the disease and presenting organ pathologies. Am. J. Hematol. 77:50,54, 2004. © 2004 Wiley-Liss, Inc. [source]


Hush Puppy: A New Mouse Mutant With Pinna, Ossicle, and Inner Ear Defects,

THE LARYNGOSCOPE, Issue 1 2005
FRCSEd, Henry Pau MD
Abstract Objectives/Hypothesis: Deafness can be associated with abnormalities of the pinna, ossicles, and cochlea. The authors studied a newly generated mouse mutant with pinna defects and asked whether these defects are associated with peripheral auditory or facial skeletal abnormalities, or both. Furthermore, the authors investigated where the mutation responsible for these defects was located in the mouse genome. Methods: The hearing of hush puppy mutants was assessed by Preyer reflex and electrophysiological measurement. The morphological features of their middle and inner ears were investigated by microdissection, paint-filling of the labyrinth, and scanning electron microscopy. Skeletal staining of skulls was performed to assess the craniofacial dimensions. Genome scanning was performed using microsatellite markers to localize the mutation to a chromosomal region. Results: Some hush puppy mutants showed early onset of hearing impairment. They had small, bat-like pinnae and normal malleus but abnormal incus and stapes. Some mutants had asymmetrical defects and showed reduced penetrance of the ear abnormalities. Paint-filling of newborns' inner ears revealed no morphological abnormality, although half of the mice studied were expected to carry the mutation. Reduced numbers of outer hair cells were demonstrated in mutants' cochlea on scanning electron microscopy. Skeletal staining showed that the mutants have significantly shorter snouts and mandibles. Genome scan revealed that the mutation lies on chromosome 8 between markers D8Mit58 and D8Mit289. Conclusion: The study results indicate developmental problems of the first and second branchial arches and otocyst as a result of a single gene mutation. Similar defects are found in humans, and hush puppy provides a mouse model for investigation of such defects. [source]


A single-base change in the tyrosine kinase II domain of ovine FGFR3 causes hereditary chondrodysplasia in sheep

ANIMAL GENETICS, Issue 1 2006
J. E. Beever
Summary Ovine hereditary chondrodysplasia, or spider lamb syndrome (SLS), is a genetic disorder that is characterized by severe skeletal abnormalities and has resulted in substantial economic losses for sheep producers. Here we demonstrate that a non-synonymous T>A transversion in the highly conserved tyrosine kinase II domain of a positional candidate gene, fibroblast growth factor receptor 3 (FGFR3), is responsible for SLS. We also demonstrate that the mutant FGFR3 allele has an additive effect on long-bone length, calling into question the long-standing belief that SLS is inherited as a strict monogenic, Mendelian recessive trait. Instead, we suggest that SLS manifestation is determined primarily by the presence of the mutant FGFR3 allele, but it is also influenced by an animal's genetic background. In contrast to FGFR3 mutations causing dwarfism in humans, this single-base change is the only known natural mutation of FGFR3 that results in a skeletal overgrowth phenotype in any species. [source]


Effects of gestational exposure to 1.95-GHz W-CDMA signals for IMT-2000 cellular phones: Lack of embryotoxicity and teratogenicity in rats

BIOELECTROMAGNETICS, Issue 3 2009
Kumiko Ogawa
Abstract The present study was designed to evaluate whether gestational exposure to an EMF targeting the head region, similar to that from cellular phones, might affect embryogenesis in rats. A 1.95-GHz wide-band code division multiple access (W-CDMA) signal, which is one applied for the International Mobile Telecommunication 2000 (IMT-2000) system and used for the freedom of mobile multimedia access (FOMA), was employed for exposure to the heads of four groups of pregnant CD(SD) IGS rats (20 per group) for gestational days 7,17. The exposure was performed for 90 min/day in the morning. The spatial average specific absorption rate (SAR) for individual brains was designed to be 0.67 and 2.0 W/kg with peak brain SARs of 3.1 and 7.0 W/kg for low (group 3) and high (group 4) exposures, respectively, and a whole-body average SAR less than 0.4 W/kg so as not to cause thermal effects due to temperature elevation. Control and sham exposure groups were also included. At gestational day 20, all dams were killed and fetuses were taken out by cesarean section. There were no differences in maternal body weight gain. No adverse effects of EMF exposure were observed on any reproductive and embryotoxic parameters such as number of live (243,271 fetuses), dead or resorbed embryos, placental weights, sex ratios, weights or external, visceral or skeletal abnormalities of live fetuses. Bioelectromagnetics 30:205,212, 2009. © 2008 Wiley-Liss, Inc. [source]


Atlas of rat fetal skeleton double stained for bone and cartilage

BIRTH DEFECTS RESEARCH, Issue 3 2001
Elena Menegola
Background The double staining of fetal skeleton for bone and cartilage is a very useful method to evidence skeletal abnormalities in laboratory animals. However, this method has been rarely used in routine developmental toxicity tests. One reason could be the difficulty of comparing the single skeletal pieces and of having reference points. In this paper the fetal rat skeleton double stained with Alizarin red S and Alcyan Blue is described in detail to produce an atlas for developmental toxicity laboratories. Teratology 64:125,133, 2001. © 2001 Wiley-Liss, Inc. [source]


Nevoid Basal Cell Carcinoma Syndrome in infants: improving diagnosis

CHILD: CARE, HEALTH AND DEVELOPMENT, Issue 3 2005
L. Pastorino
Abstract Background, Diagnosis of Nevoid Basal Cell Carcinoma Syndrome (NBCCS) in infants may pose significant challenges to clinicians owing to its variable expressivity and age-related manifestations. Methods, We report two paediatric cases of NBCCS who presented initially with a non-specific phenotype. Results, In case 1, a diagnosis of NBCCS was possible only after the father was interviewed and found to present with two major criteria for the disease. Subsequent molecular testing confirmed the diagnosis. In case 2, molecular testing of the infant and his father had diagnostic value as neither satisfied fully the current diagnostic criteria for NBCCS. Conclusions, Presence of the few clinical manifestations of NBCCS that appear in infants, typically congenital malformations and skeletal abnormalities, should prompt clinicians to conduct in-person interviews with both parents. In general, paediatricians should refer both parents of infants who are suspected of having an inherited condition to clinical geneticists for expert examination, given the potential unreliability of reported medical history. [source]