Home About us Contact | |||
Size Relationships (size + relationships)
Selected AbstractsTesting abundance-range size relationships in European carabid beetles (Coleoptera, Carabidae)ECOGRAPHY, Issue 5 2003D. Johan Kotze Four of the eight hypotheses proposed in the literature for explaining the relationship between abundance and range size (the sampling artifact, phylogenetic non-independence, range position and resource breadth hypotheses) were tested by using atlas data for carabid beetles (Coleoptera, Carabidae) from Belgium, Denmark and the Netherlands. A positive relationship between abundance and partial range size was found in all three countries, and the variation in abundance was lower for widespread species. Analysis of the data did not support three of the proposed hypotheses, but did support the resource breadth hypothesis (species having broader environmental tolerances and being able to use a wider range or resources will have higher local densities and be more widely distributed than more specialised species). Examination of species' characteristics revealed that widespread species are generally large bodied, generalists (species with wide niche breadths occurring in a variety of habitat types) and are little influenced by human-altered landscapes, while species with restricted distributions are smaller bodied, specialists (species with small niche breadths occurring in only one or two habitat types), and favour natural habitat. Landscape alteration may be an important factor influencing carabid abundance and range size in these three countries with a long history of human-induced environmental changes. [source] Trophodynamic modeling of walleye pollock (Theragra chalcogramma) in the Doto area, northern Japan: model description and baseline simulationsFISHERIES OCEANOGRAPHY, Issue 2004ORIO YAMAMURA Abstract An age-structured trophodynamic model was constructed to quantitatively analyze factors affecting post-settlement mortality and growth of walleye pollock (Theragra chalcogramma) in the Doto area, the main nursery ground of the Japan Pacific population. The model included (i) multiple age classes of pollock, (ii) a generic predator, (iii) fisheries, and (iv) major prey of pollock. Major processes considered were (i) recruitment, (ii) bottom-up control of somatic growth, (iii) mortality because of predation, cannibalism and fishing, (iv) size-selective prey selection, (v) temperature-dependent bioenergetics such as conversion efficiency and daily consumption rate, and (vi) production and advective supply of prey. By assuming that pollock select prey based upon both relative abundance and predator,prey size relationships, the model accurately simulated seasonal and ontogenetic variations in the diet. However considering ontogenetic segregation, the model showed that, due to cannibalism, newly recruited fish would be totally consumed within 6 months after settlement. By considering segregation (10% overlap during spring and 0.1% during other seasons), an agreement of diet between the simulation and empirical data averaged 82.7% for the different seasons and fish sizes. Euphausiids, the most important prey of pollock, suffered the highest predation impact (22.2 ± 5.3 WWg m,2 yr,1) exceeding annual production in the model domain (17.2 ± 0.1 WWg m,2 yr,1), indicating that an advective supply of prey is necessary to support the pollock population. The daily ration of pollock during spring and summer averaged at 1.2 and 0.6% BW day,1 for small (,200 mm) and large (>200 mm) pollock, respectively; this daily ration was reduced by half during autumn and winter. [source] clonality V.0.4: a randomization-based program to test for heterozygosity-genet size relationships in clonal organismsMOLECULAR ECOLOGY RESOURCES, Issue 5 2008FRANCK PRUGNOLLE Abstract clonality V.0.4 is a program for testing heterozygosity-genet size relationships in clonal organisms using a randomization procedure. The software has been developed under the Borland Delphi developing environment and a Windows-executable version is freely downloadable from http://gemi.mpl.ird.fr/SiteSGASS/Prugnolle/ClonalityPage.html. The program compares the observed FIS of the population with the FIS expected if genets (multilocus genotypes present in multiple copies within the population) were chosen randomly from the set of different multilocus genotypes. The randomization procedure is performed with the same number of genets and the same number of repetitions per genet as what is observed in the original data set. [source] Abundance,body mass relationships among insects along a latitudinal gradientAUSTRAL ECOLOGY, Issue 3 2008NIGEL R. ANDREW Abstract We investigated the relationship between abundance and body size (body mass) of 162 insect herbivore species on the host plant Acacia falcata along its entire coastal latitudinal distribution (eastern Australia), spanning a gradient in mean annual temperature of 4.3°C. We extend previous research by assessing these relationships at different spatial scales (latitudes pooled, among latitudes and within latitudes) and at different taxonomic levels (insect phytophages pooled, phytophagous Coleoptera and Hemiptera, and five component suborders/superfamilies). Insect species were collected from two orders (Hemiptera and Coleoptera) and five component suborders/superfamilies. There were no consistent trends in the relationships (linear or polygonal/hump-shaped) between abundance and body mass when latitudes were pooled, among latitudes, or when phytophagous insect species were separated into their component suborder/superfamily groups. The reason for the lack of consistent trends might be due to the insect herbivores not fully exploiting their host plant and the relative absence of competition among herbivore species for food resources. This is further assessed in relation to the lack of a consistent pattern in species richness of Coleoptera and Hemiptera herbivores from the same dataset and rates of chewing and sap-sucking herbivory along the same latitudinal gradient. Future studies of abundance,body size relationships are discussed in relation to sampling across environmental gradients and accounting for the influence of host plant identity and insect phylogeny. [source] Comparative body size relationships in pocket gophers and their chewing liceBIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY, Issue 2 2000SERGE MORAND In this paper, we use the method of independent contrasts to study body size relationships between pocket gophers and their chewing lice, a host-parasite system in which both host and parasite phylogcnies are well studied. The evolution of body size of chewing lice appears to be dependent only on the body size of their hosts, which confirms the 1991 findings of Harvey and Keymer. We show that there is a positive relationship between body size and hair-shaft diameter in pocket gophers, and that there is also a positive relationship between body size and head-groove width in chewing lice. Finally, we show a positive relationship between gopher hair-shaft diameter and louse head-groove width. We postulate that changes in body size of chewing lice are driven by a mechanical relationship between the parasite's head-groove dimension and the diameter of the hairs of its host. Louse species living"on larger host species may be larger simply because their hosts have thicker hairs, which requires that the lice have a wider head groove. Our study of gopher hair-shaft diameter and louse head-groove dimensions suggest that there is a ,lock-and-key' relationship between these two anatomical features. [source] |