Single Protein (single + protein)

Distribution by Scientific Domains


Selected Abstracts


Effect of glycosylation on the protein pattern in 2-D-gel electrophoresis

PROTEINS: STRUCTURE, FUNCTION AND BIOINFORMATICS, Issue 1 2007
Peter Kleinert
Abstract Single proteins, when analyzed with 2-D-PAGE, often show multiple spots due to PTMs. In gels of human body fluids, the spot patterns facilitate the assignment and identification of the proteins. We analyzed serums from patients with congenital disorders of glycosylation (CDG) in which glycoproteins are strongly impacted and exhibit highly distinguishable spot patterns compared to healthy controls. We detected a typical protein pattern for ,1 -acid glycoprotein (AGP) and transferrin (Trf) that are markers for CDG. AGP contains five glycosylation sites which results in a complex microheterogeneity of the glycoprotein. On the other hand, in Trf, a glycoprotein with only two glycosylation sites, mainly biantennary complex-type-N-linked glycans are bound. We used 2-D-PAGE, MALDI-TOF-MS, and ESI-MS for the analysis of these glycoproteins and their corresponding glycans. In AGP, the heterogenic glycosylation of the different glycosylation sites is responsible for the complex spot pattern. In contrast to AGP, the protein spots of Trf cannot be explained by glycosylation. We found strong evidence that oxidation of cysteine is responsible for the spot pattern. This study contradicts the commonly accepted assumption that the multiple protein spots of Trf observed in 2-D-PAGE are due, as in AGP, to the glycosylation of the protein. [source]


The actin gene family: Function follows isoform,

CYTOSKELETON, Issue 10 2010
Benjamin J. Perrin
Although actin is often thought of as a single protein, in mammals it actually consists of six different isoforms encoded by separate genes. Each isoform is remarkably similar to every other isoform, with only slight variations in amino acid sequence. Nevertheless, recent work indicates that actin isoforms carry out unique cellular functions. Here, we review evidence drawn from localization studies, mouse models, and biochemical characterization to suggest a model for how in vivo mixing of actin isoforms may influence cytoskeletal function in cells. © 2010 Wiley-Liss, Inc. [source]


Effect of elevated homocysteine on cardiac neural crest migration in vitro

DEVELOPMENTAL DYNAMICS, Issue 2 2002
Philip R. Brauer
Abstract A positive correlation between elevated maternal homocysteine (Hcys) and an increased risk of neural tube, craniofacial, and cardiac defects is well known. Studies suggest Hcys perturbs neural crest (NC) development and may involve N-methyl-D-aspartate (NMDA) receptors (Rosenquist et al., 1999). However, there is no direct evidence that Hcys alters NC cell behavior. Here, we evaluated the effect of Hcys on cardiac NC cell migratory behavior in vitro. Neural tube segments from chick embryos treated in ovo with or without Hcys were placed in culture and the migratory behavior of emigrating NC cells was monitored. Hcys significantly increased in vitro NC cell motility at all embryonic stages examined. NC cell surface area and perimeter were also increased. However, the relative distance NC cells migrated from their original starting point only increased in NC cells treated in ovo at stage 6 or at the time neural tube segments were cultured. Cysteine had no effect. NMDA mimicked Hcys' effect on NC motility and migration distance but had no effect on cell area or perimeter. The noncompetitive inhibitor of NMDA receptors, MK801+, significantly inhibited NC cell motility, reduced migration distance, and also blocked the effects of NMDA and Hcys on NC motility and migratory distance in vitro. A monoclonal antibody directed against the NMDA receptor immunostained NC cells in vitro and, in western blots, bound a single protein with the appropriate molecular weight for the NMDA receptor in NC cell lysates. These data are consistent with the hypothesis that a Hcys-sensitive NMDA-like receptor is expressed by early emigrating NC cells or their precursors, which is important in mediating their migratory behavior. Perturbation of this receptor may be related to some of the teratogenic effects observed with elevated Hcys. © 2002 Wiley-Liss, Inc. [source]


Matters of the heart: the physiology of cardiac function and failure

EXPERIMENTAL PHYSIOLOGY, Issue 6 2007
Godfrey Smith
Heart failure as a result of a myocardial infarction (MI) is a common condition with a poor prognosis. The adaptive changes in the surviving myocardium appear to be insufficient in terms of both mechanical/contractile performance and electrical stability. The modification of the underlying myocardial physiology is complex, varying across the different layers within the wall of the ventricle and within one layer. Two therapeutic strategies are briefly discussed, as outlined here. (i) Enhancing contractility by alteration of the expression of a single protein (e.g. sarco-endoplasmic reticulum Ca2+ ATPase, SERCA) could potentially reverse both mechanical and electrical abnormalities. However, experimental data involving the upregulation of SERCA suggest that the therapeutic range of this approach is narrow. (ii) The use of regular exercise training to improve cardiac performance in heart failure. This appears to act by normalizing a number of aspects of myocardial physiology. [source]


Characterization of the Saccharomyces cerevisiae galactose mutarotase/UDP-galactose 4-epimerase protein, Gal10p

FEMS YEAST RESEARCH, Issue 3 2007
Aaron Scott
Abstract Saccharomyces cerevisiae and some related yeasts are unusual in that two of the enzyme activities (galactose mutarotase and UDP-galactose 4-epimerase) required for the Leloir pathway of d -galactose catabolism are contained within a single protein,Gal10p. The recently solved structure of the protein shows that the two domains are separate and have similar folds to the separate enzymes from other species. The biochemical properties of Gal10p have been investigated using recombinant protein expressed in, and purified from, Escherichia coli. Protein,protein crosslinking confirmed that Gal10p is a dimer in solution and this state is unaffected by the presence of substrates. The steady-state kinetic parameters of the epimerase reaction are similar to those of the human enzyme, and are not affected by simultaneous activity at the mutarotase active site. The mutarotase active site has a strong preference for galactose over glucose, and is not affected by simultaneous epimerase activity. This absence of reciprocal kinetic effects between the active sites suggests that they act independently and do not influence or regulate each other. [source]


The SAAPdb web resource: A large-scale structural analysis of mutant proteins,

HUMAN MUTATION, Issue 4 2009
Jacob M. Hurst
Abstract The Single Amino Acid Polymorphism database (SAAPdb) is a new resource for the analysis and visualization of the structural effects of mutations. Our analytical approach is to map single nucleotide polymorphisms (SNPs) and pathogenic deviations (PDs) to protein structural data held within the Protein Data Bank. By mapping mutations onto protein structures, we can hypothesize whether the mutant residues will have any local structural effect that may "explain" a deleterious phenotype. Our prior work used a similar approach to analyze mutations within a single protein. An analysis of the contents of SAAPdb indicates that there are clear differences in the sequence and structural characteristics of SNPs and PDs, and that PDs are more often explained by our structural analysis. This mapping and analysis is a useful resource for the mutation community and is publicly available at http://www.bioinf.org.uk/saap/db/. Hum Mutat 0, 1,9, 2009. © 2009 Wiley-Liss, Inc. [source]


Functional analysis of Drosophila melanogaster hexokinase Hex-A locus: multiple Initiator-like elements enhance DPE containing promoter activity

INSECT MOLECULAR BIOLOGY, Issue 1 2007
P. C. Jayakumar
Abstract Flight muscle Hexokinase-A (HEX-A) is the most conserved and essential hexokinase isoenzyme among Drosophila species. In this study, the Hex-A locus, encoding the HEX-A isoenzyme, has been analysed for the elements regulating its expression. By sequencing the 5, ends of Hex-A cDNA amplified by 5, RACE, we identified a transcription start site that overlapped the Initiator and downstream promoter elements. A 214 bp sequence, encompassing transcription start sites and promoter elements, was required for minimal promoter activity. DNA sequence to the 5, end of the minimal promoter element did not demonstrate any promoter activity; however, its inclusion with the basal promoter element enhanced the promoter activity. Oligonucleotide competition and site-directed mutagenesis identified the Initiator-like sequences, TCAWT, present in this region that were responsible for enhancing the promoter activity. The Hex-A locus is expressed as a single protein in Drosophila cell line, whereas in pupae, larvae and adult flies, it is expressed as two distinct types. [source]


The Tissue-Specific Processing of Pro-Opiomelanocortin

JOURNAL OF NEUROENDOCRINOLOGY, Issue 6 2008
A. B. Bicknell
It is just over 30 years since the definitive identification of the adrenocorticotrophin (ACTH) precursor, pro-opiomelanocotin (POMC). Although first characterised in the anterior and intermediate lobes of the pituitary, POMC is also expressed in a number of both central and peripheral tissues including the skin, central nervous tissue and placenta. Following synthesis, POMC undergoes extensive post-translational processing producing not only ACTH, but also a number of other biologically active peptides. The extent and pattern of this processing is tissue-specific, the end result being the tissue dependent production of different combinations of peptides from the same precursor. These peptides have a diverse range of biological roles ranging from pigmentation to adrenal function to the regulation of feeding. This level of complexity has resulted in POMC becoming the archetypal model for prohormone processing, illustrating how a single protein combined with post-translational modification can have a diverse number of roles. [source]


Structural mechanisms of multidrug recognition and regulation by bacterial multidrug transcription factors

MOLECULAR MICROBIOLOGY, Issue 4 2002
Maria A. Schumacher
Summary The increase in bacterial resistance to multiple drugs represents a serious and growing health risk. One component of multidrug resistance (MDR) is a group of multidrug transporters that are often regulated at the transcriptional level by repressors and/or activators. Some of these transcription factors are also multidrug-binding proteins, frequently recognizing the same array of drugs that are effluxed by the transporters that they regulate. How a single protein can recognize such chemically disparate compounds is an intriguing question from a structural standpoint and an important question in future drug development endeavours. Unlike the multidrug transporters, the cytosolic multidrug-binding regulatory proteins are more tractable systems for structural analyses. Here, we describe recent crystallographic studies on MarR, BmrR and QacR, three bacterial transcription regulators that are also multidrug-binding proteins. Although our understanding of multidrug binding and transcriptional regulation by MarR is in its initial stages, the structure of a BmrR,TPP+,DNA complex has revealed important insights into the novel transcription activation mechanism of the MerR family, and the structures of a QacR,DNA complex and QacR bound to six different drugs have revealed not only the mechanism of induction of this repressor but has afforded the first view of any MDR protein bound to multiple drugs. [source]


Bifunctional indole-3-acetyl transferase catalyses synthesis and hydrolysis of indole-3-acetyl- myo -inositol in immature endosperm of Zea mays

PHYSIOLOGIA PLANTARUM, Issue 2 2003
Stanislaw Kowalczyk
1- O -(indole-3-acetyl)- , - d -glucose: myo -inositol indoleacetyl transferase (IA- myo -inositol synthase) is an important enzyme in IAA metabolism. This enzyme catalyses the transfer of the indole acetyl (IA) moiety from 1- O -(indole-3-acetyl)- , - d -glucose to myo -inositol to form IA- myo- inositol and glucose. IA- myo -inositol synthase was purified to an electrophoretically homogenous state from maize liquid endosperm by fractionation with ammonium sulphate, anion-exchange, adsorption on hydroxylapatite, affinity chromatography on ConA-Sepharose, preparative PAGE and isoelectric focusing. We thus obtained two enzyme preparations which differ in their Rf on 8% polyacrylamide gel. The preparation of Rf 0.36 contained a single 56.4 kDa polypeptide, whereas the preparation of Rf 0.39 consisted of two polypeptides of 56.4 and 53.5 kDa. Both purified preparations of IAInos synthase also exhibited the activity of an IAInos hydrolase, showing that the dual activity was associated with a single protein. Results of gel filtration and analytical SDS-PAGE suggest that the native enzyme exists as both a monomeric (65 kDa) and homo- or heterodimeric form (110,130 kDa). Analysis of peptide maps and amino acid sequences of two 21 amino-acid peptides showed that polypeptides of 56.4 and 53.5 kDa have the same primary structure and that the 3 kDa difference in molecular mass is probably caused by different glycosylation levels. Comparison of this partial and internal amino acid sequence with sequences of other plant acyltransferases indicated similarity to several proteins which belonged to the serine carboxypeptidase-like (SCPL) acyltransferase family. [source]


Sequence-structure analysis of FAD-containing proteins

PROTEIN SCIENCE, Issue 9 2001
Orly Dym
We have analyzed structure-sequence relationships in 32 families of flavin adenine dinucleotide (FAD)-binding proteins, to prepare for genomic-scale analyses of this family. Four different FAD-family folds were identified, each containing at least two or more protein families. Three of these families, exemplified by glutathione reductase (GR), ferredoxin reductase (FR), and p -cresol methylhydroxylase (PCMH) were previously defined, and a family represented by pyruvate oxidase (PO) is newly defined. For each of the families, several conserved sequence motifs have been characterized. Several newly recognized sequence motifs are reported here for the PO, GR, and PCMH families. Each FAD fold can be uniquely identified by the presence of distinctive conserved sequence motifs. We also analyzed cofactor properties, some of which are conserved within a family fold while others display variability. Among the conserved properties is cofactor directionality: in some FAD-structural families, the adenine ring of the FAD points toward the FAD-binding domain, whereas in others the isoalloxazine ring points toward this domain. In contrast, the FAD conformation and orientation are conserved in some families while in others it displays some variability. Nevertheless, there are clear correlations among the FAD-family fold, the shape of the pocket, and the FAD conformation. Our general findings are as follows: (a) no single protein ,pharmacophore' exists for binding FAD; (b) in every FAD-binding family, the pyrophosphate moiety binds to the most strongly conserved sequence motif, suggesting that pyrophosphate binding is a significant component of molecular recognition; and (c) sequence motifs can identify proteins that bind phosphate-containing ligands. [source]


Towards the structure of the C-terminal part of the S-layer protein SbsC

ACTA CRYSTALLOGRAPHICA SECTION F (ELECTRONIC), Issue 10 2009
Markus Kroutil
The S-layer protein SbsC from Geobacillus stearothermophilus ATCC 12980 is the most prevalent single protein produced by the bacterium and covers the complete bacterial surface in the form of a two-dimensional crystalline monolayer. In order to elucidate the structural features of the assembly domains, several N-terminally truncated fragments of SbsC have been crystallized. Crystals obtained from recombinant fragments showed anisotropic diffraction to a maximum of 3.5,Å resolution using synchrotron radiation. The best diffracting crystals were obtained from rSbsC(755,1099), an unintentional in situ proteolytic degradation product of rSbsC(447,1099). Crystals were obtained in two different space groups, P21 and P41212, and diffracted to 2.6 and 3,Å resolution, respectively. Native and heavy-atom derivative data have been collected. The structure of the C-terminal part will yield atomic resolution information for the domains that are crucial for the assembly of the two-dimensional lattice. [source]