Home About us Contact | |||
Single Probe (single + probe)
Selected AbstractsDescription and validation of high-throughput simultaneous genotyping and mutation scanning by high-resolution melting curve analysis,HUMAN MUTATION, Issue 6 2009Tú Nguyen-Dumont Abstract Mutation scanning using high-resolution melting curve analysis (HR-melt) is an effective and sensitive method to detect sequence variations. However, the presence of a common SNP within a mutation scanning amplicon may considerably complicate the interpretation of results and increase the number of samples flagged for sequencing by interfering with the clustering of samples according to melting profiles. A protocol describing simultaneous high-resolution gene scanning and genotyping has been reported. Here, we show that it can improve the sensitivity and the efficiency of large-scale case,control mutation screening. Two exons of ATM, both containing an SNP interfering with standard mutation scanning, were selected for screening of 1,356 subjects from an international breast cancer genetics study. Asymmetric PCR was performed in the presence of an SNP-specific unlabeled probe. Stratification of the samples according to their probe-target melting was aided by customized HR-melt software. This approach improved identification of rare known and unknown variants, while dramatically reducing the sequencing effort. It even allowed genotyping of tandem SNPs using a single probe. Hence, HR-melt is a rapid, efficient, and cost-effective tool that can be used for high-throughput mutation screening for research, as well as for molecular diagnostic and clinical purposes.Hum Mutat 30:1,7, 2009. © 2009 Wiley-Liss, Inc. [source] Using time-domain reflectometry to characterize shallow solute transport in an oak woodland hillslope in northern California, USAHYDROLOGICAL PROCESSES, Issue 15 2002Chris G. Campbell Abstract The natural heterogeneity of water and solute movement in hillslope soils makes it difficult to accurately characterize the transport of surface-applied pollutants without first gathering spatially distributed hydrological data. This study examined the application of time-domain reflectometry (TDR) to measure solute transport in hillslopes. Three different plot designs were used to examine the transport of a conservative tracer in the first 50 cm of a moderately sloping soil. In the first plot, which was designed to examine spatial variability in vertical transport in a 1·2 m2 plot, a single probe per meter was found to adequately characterize vertical solute travel times. In addition, a dye and excavation study in this plot revealed lateral preferential flow in small macropores and a transport pattern where solute is focused vertically into preferential flow pathways. The bypass flow delivers solute deeper in the soil, where lateral flow occurs. The second plot, designed to capture both vertical and lateral flow, provided additional evidence confirming the flow patterns identified in the excavation of the first plot. The third plot was designed to examine lateral flow and once again preferential flow of the tracer was observed. In one instance rapid solute transport in this plot was estimated to occur in as little as 3% of the available pore space. Finally, it was demonstrated that the soil anisotropy, although partially responsible for lateral subsurface transport, may also homogenize the transport response across the hillslope by decreasing vertical solute spreading. Copyright © 2002 John Wiley & Sons, Ltd. [source] Design and performance of ultra low phase noise reflection whispering gallery resonator oscillatorMICROWAVE AND OPTICAL TECHNOLOGY LETTERS, Issue 8 2007Nicolás A. Shtin Abstract This article deals with the design and experimental testing of the ultra low phase noise reflection oscillator incorporating a sapphire whispering gallery resonator (WGR). On a contrast with the conventional loop configuration oscillators with transmission WGR the presented oscillator is based on a reflection WGR excited by a single probe. It is shown that a phase noise of C-band oscillator of the proposed configuration can be as low as ,136 dBc/Hz at 1-kHz Fourier frequency. © 2007 Wiley Periodicals, Inc. Microwave Opt Technol Lett 49: 2026,2030, 2007; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/mop.22623 [source] Click Chemistry-Led Advances in High Content Functional ProteomicsMOLECULAR INFORMATICS, Issue 11-12 2007Abstract The availability of complete genome sequences for numerous eukaryotic and prokaryotic organisms has inspired the advent of new methods to functionally characterize proteins on a global scale. Chemical approaches, in particular, have emerged as a powerful way to investigate the proteome, providing small-molecule probes that report on protein activity and Post-Translational Modification (PTM) state directly in complex biological samples. Many of the key advances made in chemical proteomics can be attributed to the development of efficient bio-orthogonal reactions such as the copper (I)-catalyzed Huisgen's azide,alkyne cycloaddition, a reaction commonly known as "Click Chemistry" (CC). The generation of "clickable" proteomics probes has removed the requirement for bulky reporter tags, thereby allowing access to more biologically relevant systems such as live cells or animals. The versatility of CC has also allowed for greater experimental efficiency, as different reporter tags (i.e., a fluorophore for detection or biotin for enrichment) can be appended to a single probe. Such advances have enabled researchers to identify protein activities dysregulated in disease states, assess the selectivity of enzyme inhibitors in vivo, and inventory specific PTMs on a proteome-wide scale. [source] Towards Fast Measurement of the Electron Temperature in the SOL of ASDEX Upgrade Using Swept Langmuir ProbesCONTRIBUTIONS TO PLASMA PHYSICS, Issue 9 2010H.W. Müller Abstract On ASDEX Upgrade first experiments were made using single probes with a voltage sweep frequency up to 100kHz. Possibilities and limitations using fast swept probes with a standard diagnostic and analysis tools are discussed. A good agreement between the data derived from fast swept single probe characteristics and floating as well as saturation current measurements was found. In a stationary (non ELMing) plasma the data of the fast swept probe are compared to standard slow swept probes (kHz range) showing an improvement of the measurement by faster sweeping. While ELM filaments already could be resolved the access of electron temperature fluctuations in small scale turbulence still has to be improved. Further comparisons are done in ELMy H-mode with combined ball-pen probe/floating potential measurements which can deliver electron temperatures with 25 , s time resolution at reduced spatial resolution compared to pin probes. During ELMs the electron temperatures derived from the ball-pen probe and fast swept single probes agreed (© 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] |