Siloxane Linkage (siloxane + linkage)

Distribution by Scientific Domains


Selected Abstracts


Bioencapsulation of apomyoglobin in nanoporous organosilica sol,gel glasses: Influence of the siloxane network on the conformation and stability of a model protein

BIOPOLYMERS, Issue 11 2009
Bouzid Menaa
Abstract Nanoporous sol,gel glasses were used as host materials for the encapsulation of apomyoglobin, a model protein employed to probe in a rational manner the important factors that influence the protein conformation and stability in silica-based materials. The transparent glasses were prepared from tetramethoxysilane (TMOS) and modified with a series of mono-, di- and tri-substituted alkoxysilanes, RnSi(OCH3)4,n (R = methyl-, n = 1; 2; 3) of different molar content (5, 10, 15%) to obtain the decrease of the siloxane linkage (SiOSi). The conformation and thermal stability of apomyoglobin characterized by circular dichroism spectroscopy (CD) was related to the structure of the silica host matrix characterized by 29Si MAS NMR and N2 adsorption. We observed that the protein transits from an unfolded state in unmodified glass (TMOS) to a native-like helical state in the organically modified glasses, but also that the secondary structure of the protein was enhanced by the decrease of the siloxane network with the methyl modification (n = 0 < n = 1 < n = 2 < n = 3; 0 < 5 < 10 < 15 mol %). In 15% trimethyl-modified glass, the protein even reached a maximum molar helicity (,24,000 deg. cm2 mol,1) comparable to the stable folded heme-bound holoprotein in solution. The protein conformation and stability induced by the change of its microlocal environment (surface hydration, crowding effects, microstructure of the host matrix) were discussed owing to this trend dependency. These results can have an important impact for the design of new efficient biomaterials (sensors or implanted devices) in which properly folded protein is necessary. © 2009 Wiley Periodicals, Inc. Biopolymers 91: 895,906, 2009. This article was originally published online as an accepted preprint. The "Published Online" date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com [source]


Mesoporous Silica Nanosphere-Supported Chiral Ruthenium Catalysts: Synthesis, Characterization, and Asymmetric Hydrogenation Studies

CHEMCATCHEM, Issue 3 2009
David
Abstract Chiral RuCl2,diphosphine,diamine complexes with a pendant siloxy group were synthesized and characterized by NMR spectroscopy and mass spectrometry. The Ru complexes were grafted onto three different types of mesoporous silica nanospheres (MSNs) through the siloxane linkage, and the resulting MSN-supported Ru catalysts were highly active for the asymmetric hydrogenation of aromatic ketones, to afford chiral secondary alcohols, and racemic arylaldehydes, to give chiral primary alcohols. Excellent activities and enantioselectivities were observed for these MSN-supported Ru catalysts owing to readily accessible and uniform catalytic sites within the large channels of MSNs (diameters of >2,nm) and short diffusion lengths for the organic compounds as a result of small nanoparticle sizes of less than 1,,m. This catalyst immobilization strategy with MSN supports should be amenable to the design of many highly active and enantioselective heterogeneous asymmetric catalysts. [source]


Synthesis and characterization of fluorene-based copolymers containing siloxane or distilbene moieties on their main chain

JOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 6 2009
Hoon-Je Cho
Abstract Two novel types of polyfluorene copolymers containing siloxane linkages or distilbene moieties on their main-chains were synthesized by Ni(0)-mediated Yamamoto coupling polymerization. These polymers, designated P2Silo05, P2Silo15, PF-P02, and PF-P05 were prepared by copolymerization between 2,7-dibromo-9,9,-dihexylfluorene and bis(bromobenzene)-terminated disiloxane monomer (for P2Silo05 and P2Silo15) or dibromodistilbene monomer (for PF-P02 and PF-P05). All of the polymers were highly soluble in common organic solvents such as chloroform, toluene, and p -xylene. The glass transition temperatures of the polymers were between 92 and 113 °C, and the decomposition temperatures for a 5% weight loss (Td) were above 420 °C for all of the polymers, demonstrating high thermal stability. The molecular weight (Mw) of the polymers ranged from 4.2 × 104 to 8.8 × 104. The blue shift of the maximum in the UV-visible absorption was greater in polymers with a higher molar percentage of siloxane linkages or distilbene moieties than in homo poly (dihexylfluorene) (PDHF). However, the photoluminescence spectra of the polymers were similar to those of PDHF in terms of the onsets and patterns. Single-layer light-emitting diodes were fabricated with a configuration of ITO/PEDOT:PSS/polymers/Ca/Al. The maximum electroluminescence emission wavelengths of the polymers were 425,450 nm, corresponding to pure blue light. The CIE co-ordinates of the polyfluorenes containing siloxane linkages or distilbene moieties ranged from (0.21, 0.21) to (0.17, 0.10), indicating deeper blue light than that of PDHF {CIE co-ordinates of (0.25, 0.29)}, with P2Silo15 giving the deepest blue-light {CIE co-ordinates of (0.17, 0.10)}. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 1595,1608, 2009 [source]


An investigation of the effect of silane water-crosslinking on the properties of poly(L-lactide)

POLYMER INTERNATIONAL, Issue 5 2010
Changyu Han
Abstract A silane-grafting water-crosslinking approach was developed to crosslink poly(L -lactide) (PLLA) by grafting vinylalkoxysilane onto PLLA using dicumyl peroxide, followed by silane hydrolysis to form siloxane linkages between PLLA chains. The degree of silane grafting onto PLLA was qualitatively characterized using Fourier transform infrared spectroscopy and quantitatively determined using inductively coupled plasma mass spectrometry. Crosslinked PLLA films were obtained by curing of silane-grafted PLLA in hot water. Gel fractions were evaluated in order to calculate the crosslinking reaction kinetics and crosslinking density. Various techniques were used to investigate the effect of silane water-crosslinking on the thermomechanical properties, hydrolysis resistance and biodegradation of PLLA. In addition to an improvement in thermal stability and mechanical properties, hydrolysis resistance was significantly enhanced as a result of silane water-crosslinking of PLLA. Moreover, the biodegradation of silane water-crosslinked PLLA was retarded compared with neat PLLA. Copyright © 2010 Society of Chemical Industry [source]