Silica Particles (silica + particle)

Distribution by Scientific Domains
Distribution within Polymers and Materials Science

Kinds of Silica Particles

  • colloidal silica particle
  • spherical silica particle


  • Selected Abstracts


    Hybrid Bioorganic,Inorganic Materials Prepared by Site-Specific Ligation of Peptides to Functionalized Polydisperse Silica Particles

    EUROPEAN JOURNAL OF ORGANIC CHEMISTRY, Issue 12 2005
    Pascal Joly
    Abstract We describe the synthesis of semicarbazide- or glyoxylyl-functionalized polydisperse silica particles and their use for the preparation of hybrid polypeptide,silica materials. The peptides were attached to the surface of functionalized silicas by site-specific ,-oxo hydrazone or semicarbazone ligation. The reaction of semicarbazide silicas with a model glyoxylyl peptide was found to be very efficient under stoichiometric conditions and led to ligation yields of about 90,%. The use of glyoxylyl silicas and of hydrazinoacetyl peptides led to lower yields. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2005) [source]


    New Process for the Preparation of Monodispersed, Spherical Silica Particles

    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, Issue 5 2002
    Ki Do Kim
    A new method is presented for preparing highly monodispersed silica particles using a two-stage semibatch/batch hydrolysis reaction of Si(OC2H5)4. The slower rate of hydrolysis of the tetraethylorthosilicate (TEOS) that occurred during the semibatch process resulted in larger silica particles with a higher yield and narrower size distribution. This was in direct contrast to the batch process. In addition, the ability of four different mixed processes to produce silica particles with good packing density, narrower particle-size distribution, and higher yield were evaluated. These were batch/batch (B-B), batch/semibatch (B-S), semibatch/batch (S-B), and semibatch/semibatch (S-S) processes. The S-S system produced the largest particles with the highest yields. The size of the silica particles obtained by the S-B method decreased with increasing reaction time, while the particles obtained by the B-S process had the best particle-size distribution and packing density. In conclusion, a mixed batch/semibatch system was the best way to produce an extremely narrow particle-size distribution and a good packing density. [source]


    Effect of Nano-Aluminum and Fumed Silica Particles on Deflagration and Detonation of Nitromethane

    PROPELLANTS, EXPLOSIVES, PYROTECHNICS, Issue 5 2009
    Justin
    Abstract The heterogeneous interaction between nitromethane (NM), particles of nanoscale aluminum (38 and 80,nm diameter), and fumed silica is examined in terms of the deflagration and detonation characteristics. Burning rates are quantified as functions of pressure using an optical pressure vessel up to 14.2,MPa, while detonation structure is characterized in terms of failure diameter. Nitromethane is gelled using fumed silica (CAB-O-SIL®), as well as by the nanoaluminum particles themselves. Use of nanoaluminum particles with fumed silica slightly increases burning rates compared to the use of larger diameter Al particles; however distinct increases in burning rates are found when CAB-O-SIL is removed and replaced with more energetic aluminum nanoparticles, whose high surface area allows them to also act as the gellant. Mixtures including fumed silica yield a reduced burning rate pressure exponent compared to neat NM, while mixtures of aluminum particles alone show a significant increase. Failure diameters of mixture detonations are found to vary significantly as a function of 38,nm aluminum particle loading, reducing more than 50% from that of neat nitromethane with 12.5% (by mass) aluminum loading. Failure diameter results indicate a relative minimum with respect to particle separation (% loading) which is not observed in other heterogeneous mixtures. [source]


    Relationship between Floc Short Range Structure and Sediment Compaction,

    PARTICLE & PARTICLE SYSTEMS CHARACTERIZATION, Issue 5 2003
    Mandalena Hermawan
    Abstract This paper studies the short and long-range structure of silica aggregates using the small angle light scattering technique. Silica particles were made to aggregate by the addition of MgCl2, with and without continuous shear. Two different short-range structures were observed for different aggregation conditions. The small angle light scattering reveals two different floc structures at different length scales, a very compact floc at short length scale and a loose floc at large length scale. The sediments of these flocs were studied by allowing them to settle under gravity and consolidate at different centrifugal forces. The results show that the floc short-range structure is important in governing the compaction behaviour of sediment. [source]


    Dimethylsilylbis(1-indenyl) zirconium dichloride/methylaluminoxane catalyst supported on nanosized silica for propylene polymerization

    JOURNAL OF APPLIED POLYMER SCIENCE, Issue 3 2008
    Kuo-Tseng Li
    Abstract A dimethylsilylene-bridged metallocene complex, (CH3)2Si(Ind)2ZrCl2, was supported on a nanosized silica particle, whose surface area was mostly external. The resulting catalyst was used to catalyze the polymerization of propylene to polypropylene. Under identical reaction conditions, a nanosized catalyst exhibited much better polymerization activity than a microsized catalyst. At the optimum polymerization temperature of 55°C, the former had 80% higher activity than the latter. In addition, the nanosized catalyst produced a polymer with a greater molecular weight, a narrower molecular weight distribution, and a higher melting point in comparison with the microsized catalyst. The nanosized catalyst's superiority was ascribed to the higher monomer concentration at its external active sites (which were free from internal diffusion resistance) and was also attributed to its much larger surface area. Electron microscopy results showed that the nanosized catalyst produced polymer particles of similar sizes and shapes, indicating that each nanosized catalyst particle had uniform polymerization activity. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 [source]


    The application of novel 1.7 ,m ethylene bridged hybrid particles for hydrophilic interaction chromatography

    JOURNAL OF SEPARATION SCIENCE, JSS, Issue 9 2008
    Eric S. Grumbach
    Abstract An un-derivatized 1.7 ,m ethylene bridged hybrid (BEH) particle was evaluated for its utility in retaining polar species in hydrophilic interaction chromatography (HILIC), and was compared to a 3 ,m un-derivatized silica material. Retentivity as a function of mobile phase pH, polar modifier and ACN content was examined. Also, the efficiency of the two particle substrates was compared by plotting HETP vs. linear velocity. Improved chemical resistance of the un-derivatized BEH particle was compared to un-derivatized silica at pH 5, demonstrating no performance deterioration over the course of 2000 injections for the BEH particle, while the silica particle deteriorated rapidly after 800 injections. Lastly, ESI-MS sensitivity as a function of particle size and separation mode was demonstrated. A 2.2 to 4.7-times higher ESI-MS response was observed on the 1.7 ,m particle compared to the 3 ,m particle, whereas a 5.6 to 8.8-times higher ESI-MS response was observed using HILIC as when compared to traditional RP chromatography. [source]


    Structural estimation of particle arrays at air,water interface based on silica particles with well-defined and highly grafted poly(methyl methacrylate)

    POLYMER ENGINEERING & SCIENCE, Issue 6 2010
    Jung-Min Moon
    Silica nanoparticles with well-defined, highly grafted dense poly(methyl methacrylate) (MMA) were prepared by surface-initiated activators regenerated by electron transfer for atom transfer radical polymerization (ARGET ATRP) of methyl methacrylate with an initiator-fixed silica particle in the presence of air. Two different polymerizations of MMA were carried out under the same conditions using tris[2-(dimethylamino)ethyl]amine (Me6TREN) and N,N,N,,N,,N,-pentamethyldiethylene-triamine (PMDETA) as the ligand, respectively. In the CuCl2/PMDETA system, polymerization appeared to be more controlled with a lower polydisperisty compared with the CuCl2/Me6TREN system. The monolayer of these particles was formed at the air,water interface using Langmuir-Blodgett (LB) technique. Multilayers of the particles were fabricated by repetition of LB depositing. A surface pressure,area (,,A) measurement and SEM observation were used to characterize the particle arrays. POLYM. ENG. SCI., 2010. © 2009 Society of Plastics Engineers [source]


    Risk of silicosis in cohorts of Chinese tin and tungsten miners and pottery workers (II): Workplace-specific silica particle surface composition,,

    AMERICAN JOURNAL OF INDUSTRIAL MEDICINE, Issue 1 2005
    J. Harrison
    Abstract Background It is hypothesized that surface occlusion by alumino-silicate affects the toxic activity of silica particles in respirable dust. In conjunction with an epidemiological investigation of silicosis disease risk in Chinese tin and tungsten mine and pottery workplaces, we analyzed respirable silica dusts using a multiple-voltage scanning electron microscopy,energy dispersive X-ray spectroscopy (MVSEM-EDS). Methods Forty-seven samples of respirable sized dust were collected on filters from 13 worksites and were analyzed by MVSEM-EDS using high (20 keV) and low (5 keV) electron beam accelerating voltages. Changes in the silicon-to-aluminum X-ray line intensity ratio between the two voltages are compared particle-by-particle with the 90th percentile value of the same measurements for a ground glass homogeneous control sample. This provides an index that distinguishes a silica particle that is homogeneously aluminum-contaminated from a clay-coated silica particle. Results The average sample percentages of respirable-sized silica particles alumino-silicate occlusion were: 45% for potteries, 18% for tin mines, and 13% for tungsten mines. The difference between the pottery and the metal mine worksites accounted for one third of an overall chi-square statistic for differences in change in measured silicon fraction between the samples. Conclusion The companion epidemiological study found lower silicosis risk per unit cumulative respirable silica dust exposure for pottery workers compared to metal miners. Using these surface analysis results resolves differences in risk when exposure is normalized to cumulative respirable surface-available silica dust. Am. J. Ind. Med. 48:10,15, 2005. Published 2005 Wiley-Liss, Inc. [source]


    Effect of Solvation Film on the Viscosity of Colloidal Dispersions

    CHINESE JOURNAL OF CHEMISTRY, Issue 5 2005
    Peng Chang-Sheng
    Abstract Viscosity is one of the most important properties of colloids in mixing, transportation, stabilization, energy consumption, and so on. According to Einstein's viscosity equation, the viscosity of a colloidal dispersion increases with the increase of particle concentration. And the equation can be applicable to all micro-particle dispersions, because the effect of solvation films coated on particles can be neglectable in that case. But with the decrease of particle size to nano-scale, the formation of solvation films on nano-particles can greatly affect the viscosity of a dispersion, and Einstein's equation may not be applicable to this case. In this work, one kind of micro-size silica particle and two kinds of nano-size silica particles were used to investigate the effect of solvation films on dispersion viscosity, dispersed in water and ethyl alcohol solvents, respectively. The results of theoretical calculation and experimental investigation show that the increase of viscosity is contributed from solvation films by more than 95 percent for nano-particle dispersions, while less than 10 percent for micro-particle dispersions. [source]


    Direct Electrochemistry of Cytochrome c at Gold Electrode Modified with Fumed Silica

    ELECTROANALYSIS, Issue 20 2005
    Hongjun Chen
    Abstract Direct electrochemistry of horse heart cytochrome c (cytc) has been obtained at a gold electrode constructed by self-assembling fumed silica particles (FSPs) onto a silane monolayer. A pair of well-defined and nearly symmetrical redox peaks of cytc is obtained at the FSPs film modified gold electrode. Cyclic voltammetry (CV) and tapping-mode atomic force microscopy (AFM) are used to characterize the FSPs film modified electrode, showing that the FSPs can provide a favorable microenvironment for cytc and facilitate the direct electron transfer between the cytc and the gold electrode, which may propose an approach to realize the direct electrochemistry of other proteins. [source]


    Synthesis of Monodisperse Silica Nanoparticles Dispersable in Non-Polar Solvents,

    ADVANCED ENGINEERING MATERIALS, Issue 5 2010
    Eoin Murray
    Three synthetic routes to hydrophobic silica nanoparticles are compared in this paper. First, the established synthetic method based on the Stöber process was examined. Monodisperse colloidal silica particles with diameters of 15,25,nm were prepared via the hydrolysis of tetraethyl orthosilicate (TEOS) by aqueous ammonia in ethanol. The surfaces of these particles were rendered hydrophobic with octadecyltrimethoxysilane (ODTMS) after the reaction or, more conveniently, during the growth phase. Secondly, silica particles with diameters of 15,50,nm were prepared using a one-pot synthesis in which TEOS was hydrolyzed by an amino acid and the resulting particles were coated with ODTMS. Lastly a novel, direct approach to the synthesis of hydrophobic organosilica nanoparticles was developed using ODTMS as the single silica source. Hydrolysis of the ODTMS by aqueous ammonia in ethanol yielded monodisperse colloidal organosilica particles with diameters of 15,30,nm. [source]


    STED Microscopy to Monitor Agglomeration of Silica Particles Inside A549 Cells,

    ADVANCED ENGINEERING MATERIALS, Issue 5 2010
    Sabrina Schübbe
    The widespread use of engineered nanomaterials increases the exposure of the materials to humans. Therefore, it is necessary to know how these materials interact with cells. One approach is to trace particles by fluorescent labeling. The aim of the present work was to study the behavior of silica particles in A549 cells. For the first time, we applied stimulated emission depletion (STED) microscopy for this approach. Therefore, SiO2 particles conjugated with Atto647N were prepared by L -arginine-catalyzed hydrolysis of tetraethoxysilane. The Atto647N labeled SiO2 particles exhibit a mean size of 128,±,7,nm and a zeta-potential of ,11,mV in cell culture medium. STED microscopy enables subdiffraction resolution imaging of single Atto647N labeled SiO2 particles not only in pure solution but also in a cellular environment. To visualize Atto647N labeled SiO2 particles inside A549 cells, the membrane was labeled and image stacks, that give three-dimensional information, were taken after 5, 24, and 48 h exposure of particles to cells. During this incubation period, an increase in particle uptake was observed and STED micrographs allowed us to evaluate the agglomeration of Atto647N labeled SiO2 particles inside A549 cells. Our results show that STED microscopy is a powerful technique to study particles in a cellular environment. [source]


    Hybrid Bioorganic,Inorganic Materials Prepared by Site-Specific Ligation of Peptides to Functionalized Polydisperse Silica Particles

    EUROPEAN JOURNAL OF ORGANIC CHEMISTRY, Issue 12 2005
    Pascal Joly
    Abstract We describe the synthesis of semicarbazide- or glyoxylyl-functionalized polydisperse silica particles and their use for the preparation of hybrid polypeptide,silica materials. The peptides were attached to the surface of functionalized silicas by site-specific ,-oxo hydrazone or semicarbazone ligation. The reaction of semicarbazide silicas with a model glyoxylyl peptide was found to be very efficient under stoichiometric conditions and led to ligation yields of about 90,%. The use of glyoxylyl silicas and of hydrazinoacetyl peptides led to lower yields. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2005) [source]


    Biomimetic Composites: Protein Localization in Silica Nanospheres Derived via Biomimetic Mineralization (Adv. Funct.

    ADVANCED FUNCTIONAL MATERIALS, Issue 18 2010
    Mater.
    Abstract Lysozyme-templated precipitation of silica synthesized by sol-gel chemistry produces a composite material with antimicrobial properties. This study investigates the structural properties of the composite material that allow for retention of the antimicrobial activity of lysozyme. Scanning (SEM) and transmission (TEM) electron microscopy reveal that the composite has a hierarchical structure composed of quasi-spherical structures (,450 nm diameter), which are in turn composed of closely packed spherical structures of ,8,10 nm in diameter. Using small-angle neutron scattering (SANS) with contrast variation, the scattering signatures of the lysozyme and silica within the composite were separated. It was determined that the lysozyme molecules are spatially correlated in the material and form clusters with colloidal silica particles. The size of the clusters determined by SANS agrees well with the structural architecture observed by TEM. BET analysis revealed that the surface area of the composite is relatively low (4.73 m2/g). However, after removal of the protein by heating to 200 °C, the surface area is increased by ,20%. In addition to demonstrating a well organized sol-gel synthesis which generates a functional material with antimicrobial applications, the analysis and modeling approaches described herein can be used for characterizing a wide range of mesoporous and ultrastructural materials. [source]


    Protein Localization in Silica Nanospheres Derived via Biomimetic Mineralization

    ADVANCED FUNCTIONAL MATERIALS, Issue 18 2010
    Mateus B. Cardoso
    Abstract Lysozyme-templated precipitation of silica synthesized by sol-gel chemistry produces a composite material with antimicrobial properties. This study investigates the structural properties of the composite material that allow for retention of the antimicrobial activity of lysozyme. Scanning (SEM) and transmission (TEM) electron microscopy reveal that the composite has a hierarchical structure composed of quasi-spherical structures (,450 nm diameter), which are in turn composed of closely packed spherical structures of ,8,10 nm in diameter. Using small-angle neutron scattering (SANS) with contrast variation, the scattering signatures of the lysozyme and silica within the composite were separated. It was determined that the lysozyme molecules are spatially correlated in the material and form clusters with colloidal silica particles. The size of the clusters determined by SANS agrees well with the structural architecture observed by TEM. BET analysis revealed that the surface area of the composite is relatively low (4.73 m2/g). However, after removal of the protein by heating to 200 °C, the surface area is increased by ,20%. In addition to demonstrating a well organized sol-gel synthesis which generates a functional material with antimicrobial applications, the analysis and modeling approaches described herein can be used for characterizing a wide range of mesoporous and ultrastructural materials. [source]


    Hierarchic Nanostructure for Auto-Modulation of Material Release: Mesoporous Nanocompartment Films

    ADVANCED FUNCTIONAL MATERIALS, Issue 11 2009
    Qingmin Ji
    The preparation of mesoporous nanocompartment films composed of both hollow silica capsules and silica particles by using layer-by-layer (LbL) adsorption is described. The resultant nanocompartment films exhibit stepwise release of encapsulated water molecules without application of external stimuli. The hollow hierarchic pore structure of the silica capsules, including their internal void and mesoporous walls, is a key factor for the regulation and stepwise release of water, and is probably caused by the non-equilibrated concurrent evaporation of material from the mesopore and capillary penetration into the mesopores. The number of release steps and rate of release can be tuned by variation of several parameters including water content, ambient temperature, layer multiplicity, and co-adduct particle size. Application of the mesoporous nanocompartment films for the release of substances, including therapeutic agents and fragrances, indicates that the stepwise material release can be applied for a wide range of liquid substances. The films should lead to a novel material release system useful even for biomedical applications capable of controlled and sustained delivery of drug molecules. [source]


    Self-Supporting, Double Stimuli-Responsive Porous Membranes From Polystyrene- block -poly(N,N -dimethylaminoethyl methacrylate) Diblock Copolymers

    ADVANCED FUNCTIONAL MATERIALS, Issue 7 2009
    Felix Schacher
    Abstract Asymmetric membranes are prepared via the non-solvent-induced phase separation (NIPS) process from a polystyrene- block -poly(N,N -dimethylaminoethyl methacrylate) (PS- b -PDMAEMA) block copolymer. The polymer is prepared via sequential living anionic polymerization. Membrane surface and volume structures are characterized by scanning electron microscopy. Due to their asymmetric character, resulting in a thin separation layer with pores below 100,nm on top and a macroporous volume structure, the membranes are self-supporting. Furthermore, they exhibit a defect-free surface over several 100,µm2. Polystyrene serves as the membrane matrix, whereas the pH- and temperature-sensitive minority block, PDMAEMA, renders the material double stimuli-responsive. Therefore, in terms of water flux, the membranes are able to react on two independently applicable stimuli, pH and temperature. Compared to the conditions where the lowest water flux is obtained, low temperature and pH, activation of both triggers results in a seven-fold permeability increase. The pore size distribution and the separation properties of the obtained membranes were tested through the pH-dependent filtration of silica particles with sizes of 12,100,nm. [source]


    A Facile Synthesis and Characterization of Monodisperse Spherical Pigment Particles with a Core/Shell Structure,

    ADVANCED FUNCTIONAL MATERIALS, Issue 9 2007
    C. Lin
    Abstract In this paper, a facile sol,gel process for producing monodisperse, spherical, and nonaggregated pigment particles with a core/shell structure is reported. Spherical silica particles (245 and 385,nm in diameter) and Cr2O3, ,-Fe2O3, ZnCo2O4, CuFeCrO4, MgFe2O4, and CoAl2O4 pigments are selected as cores and shells, respectively. The obtained core/shell-structured pigment samples, denoted as SiO2@Cr2O3 (green), SiO2@,-Fe2O3 (red), SiO2@MgFe2O4 (brown), SiO2@ZnCo2O4 (dark green), SiO2@CoAl2O4 (blue), and SiO2@CuFeCrO4 (black), are well characterized by using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), and UV-vis diffuse reflection, as well as by investigating the magnetic properties. The results of XRD and high-resolution TEM (HRTEM) demonstrate that the pigment shells crystallize well on the surface of SiO2 particles. The thickness of the pigment shell can be tuned by the number of coatings, to some extent. These pigment particles can be well dispersed in some solvents (such as glycol) to form relatively more stable suspensions than the commercial products. Apart from the color characteristics, some of pigments like SiO2@Cr2O3, SiO2@MgFe2O4, and SiO2@CuFeCrO4 also show magnetic properties with coercivities of 1098,Oe (5,K), 648,Oe (5,K), and 91,Oe (298,K), respectively. [source]


    The Synthesis of Novel Porous Functional Materials for use as Nitrosamine Traps,

    ADVANCED FUNCTIONAL MATERIALS, Issue 11 2004
    Y. Xu
    Abstract Two novel porous nitrosamine traps have been synthesized in order to eliminate carcinogens from the environment. A functional mesoporous material, CuO/SBA-15, has been synthesized by using an in-situ coating method, with the addition of a guest salt to the reaction system to modify the porous materials before the particles of SBA-15 were incubated; the synthesis and modification processes were performed in a single step. The resulting mesoporous composites selectively adsorb N -nitrosopyrrolidine (NPYR), a typical volatile nitrosamine, and are potential cigarette additives that can be used for the removal of nitrosamines from cigarette smoke, thereby protecting public health and the environment. In another reaction, silica gel is modified by being coated with magnesia and then corroded by NaOH solution. The magnesia is dispersed onto the silica by impregnating it with a magnesium acetate solution, followed by calcination. After corrosion of the calcined sample with caustic soda, only the silica particles that are completely covered by magnesia remain. This material exhibits a similar ability to SBA-15 and zeolite NaY in its selective adsorption of NPYR. [source]


    Patterned Polymeric Domes with 3D and 2D Embedded Colloidal Crystals using Photocurable Emulsion Droplets

    ADVANCED MATERIALS, Issue 37 2009
    Shin-Hyun Kim
    Hierarchical dome patterns are prepared via a novel single-step patterning process. Photonic domes with isotropic reflection colors are patterned on a prepatterned glass substrate with a hydrophobic moiety using photocurable emulsion droplets of all-equal size, which contain concentrated silica particles. Furthermore, embossed domes are patterned with PS particle-stabilized photocurable emulsion droplets, which can act as a near-field microlens array. [source]


    Fabrication of Freestanding Nanoporous Polyethersulfone Membranes Using Organometallic Polymer Resists Patterned by Nanosphere Lithography

    ADVANCED MATERIALS, Issue 20 2009
    Canet Acikgoz
    Freestanding nanoporous polysulfone membranes are fabricated using nanosphere lithography, in which colloidal silica particles act as a template for the organometallic etch resist, which is composed of poly(ferrocenylsilanes). As shown in the figure, the membranes are robust enough to be removed from the silica wafers where they were produced. They can subsequently be used to separate particles of different sizes. [source]


    Surface Polymerization of Hydrophilic Methacrylates from Ultrafine Silica Sols in Protic Media at Ambient Temperature: A Novel Approach to Surface Functionalization Using a Polyelectrolytic Macroinitiator,

    ADVANCED MATERIALS, Issue 18 2003
    X. Chen
    A convenient one-pot synthesis of polymer-grafted nano-sized silica particles using atom transfer radical polymerization (see Figure) is described. Physical adsorption of a cationic macroinitiator allows polymerization of a range of hydrophilic methacrylates. A high degree of coverage of the silica sol particles by the grafted polymer chains was indicated. [source]


    The influence of in situ modification of silica on filler network and dynamic mechanical properties of silica-filled solution styrene,butadiene rubber

    JOURNAL OF APPLIED POLYMER SCIENCE, Issue 1 2008
    You-Ping Wu
    Abstract The influence of in situ modification of silica with bis-(3-(triethoxysilyl)-propyl)-tetrasulfide (TESPT) on filler network in silica filled solution SBR compound was investigated. In situ modification greatly increased the bound rubber content. TEM observation of silica gel showed that bridging and interlocking of absorbed chains on the surface of silica particles formed the filler network. Rubber processing analyzer (RPA) was used to characterize the filler network and interaction between silica and rubber by strain and temperature sweeps. In situ modification improved the dispersion of silica, and in the meantime, the chemical bonds were formed between silica and rubber, which conferred the stability of silica dispersion during the processing. Compared to the compound without in situ modification, the compound with in situ modification of silica exhibited higher tan , at low strains and lower tan , at high strains, which can be explained in terms of filler network in the compounds. After in situ modification, DMTA results showed silica-filled SSBR vulcanizate exhibited higher tan , in the temperature range of ,30 to 10°C, and RPA results showed that it had lower tan , at 60°C when the strain was more than 3%. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 [source]


    Fabrication by three-phase emulsification of pellicular adsorbents customised for liquid fluidised bed adsorption of bioproducts

    JOURNAL OF CHEMICAL TECHNOLOGY & BIOTECHNOLOGY, Issue 11 2003
    Mohsen Jahanshahi
    Abstract A novel dense pellicular adsorbent, custom-designed for liquid fluidised bed adsorption of protein bioproducts, has been fabricated by coating zirconia,silica particles with agarose gel in a three-phase emulsification process. A slurry feedstock comprising solid zirconia,silica particles (120 µm average diameter) suspended in an aqueous solution of agarose was emulsified in an oil,surfactant mixture in a stirred vessel to yield composite droplets. These were subsequently stabilised by cooling to form spherical pellicular particles characterised by a porous, pellicular coat cast upon a solid core. The impact of agitation speed, surfactant concentration, oil viscosity and slurry composition upon the pellicle depth and overall particle diameter was investigated. Pellicle depth decreased with increasing impeller speed and decreased oil viscosity, whilst increased slurry viscosity enhanced that parameter. Initial increases from low concentrations of Span 80 surfactant (0.1% w/v oil) reduced the depth of the agarose pellicle, but the highest values investigated (1.5% w/v oil) promoted particle aggregation. The fluidisation behaviour of particles fabricated under various conditions was characterised by the measurement of expansion coefficients and axial dispersion coefficients for the liquid phase when operated in a standard fluidised bed contactor. Both parameters were found to be comparable or superior to those reported for conventional, composite fluidised bed adsorbents. The controlled coating of porous agarose upon a solid core to yield specific pellicular geometries is discussed in the context of the fabrication of adsorbents customised for the recovery of a variety of bioproducts (macromolecules, nanoparticulates) from complex particulate feedstocks (whole broths, cell disruptates and unclarified bio-extracts). Given the agreement between the size of the pellicular particles and the trends expected from theory, the large-scale manufacture of such particles for customised industrial use is recommended. Copyright © 2003 Society of Chemical Industry [source]


    Methodology Optimization for Quantification of Total Phenolics and Individual Phenolic Acids in Sweetpotato (Ipomoea batatas L.) Roots

    JOURNAL OF FOOD SCIENCE, Issue 7 2007
    M.S. Padda
    ABSTRACT:, Phenolic acids are one of the several classes of naturally occurring antioxidant compounds found in sweetpotatoes. Simplified, robust, and rapid methodologies were optimized to quantify total and individual phenolic acids in sweetpotato roots. Total phenolic acid content was quantified spectrophotometrically using both Folin,Denis and Folin,Ciocalteu reagents. The Folin,Ciocalteu reagent gave an overestimation of total phenolic acids due to the absorbance of interfering compounds (that is, reducing sugars and ascorbic acid). Individual phenolic acids were quantified by high-performance liquid chromatography (HPLC) using the latest in column technology. Four reversed-phase C18 analytical columns with different properties (dimensions, particle size, particle shape, pore size, and carbon load) were compared. Three different mobile phases using isocratic conditions were also evaluated. A column (4.6 × 150 mm) packed with 5-,m spherical silica particles of pore size 110 Å combined with 14% carbon load provided the best and fast separation of individual phenolic acids (that is, chlorogenic acid, caffeic acid, and 3 isomers of dicaffeoylquinic acid) with a total analysis time of less than 7 min. Among the 3 mobile phases tested, a mobile phase consisting of 1% (v/v) formic acid aqueous solution: acetonitrile: 2-propanol, pH 2.5 (70:22:8, v/v/v) gave adequate separation. Among the solvents tested, aqueous mixtures (80:20, solvent:water) of methanol and ethanol provided higher phenolic acid extraction efficiency than the aqueous mixture of acetone. [source]


    Nanoparticle formation through solid-fed flame synthesis: Experiment and modeling

    AICHE JOURNAL, Issue 4 2009
    W. Widiyastuti
    Abstract The preparation of silica nanoparticles through solid-fed flame synthesis was investigated experimentally and theoretically. Monodispersed submicrometer- and micrometer-sized silica powders were selected as solid precursors for feeding into a flame reactor. The effects of flame temperature, residence time, and precursor particle size were investigated systematically. Silica nanoparticles were formed by the nucleation, coagulation, and surface growth of the generated silica vapors due to the solid precursor evaporation. Numerical modeling was conducted to describe the mechanism of nanoparticle formation. Evaporation of the initial silica particles was considered in the modeling, accounting for its size evolution. Simultaneous mass transfer modeling due to the silica evaporation was solved in combination with a general dynamics equation solution. The modeling and experimental results were in agreement. Both results showed that the methane flow rate, carrier gas flow rate, and initial particle size influenced the effectiveness of nanoparticle formation in solid-fed flame synthesis. © 2009 American Institute of Chemical Engineers AIChE J, 2009 [source]


    Protein partitioning and transport in supported cationic acrylamide-based hydrogels

    AICHE JOURNAL, Issue 5 2003
    Shawn M. Russell
    The partitioning and transport of myoglobin in cationic, acrylamide-based hydrogels are studied by a microscopic visualization method. Homogeneous cationic gels are synthesized inside fused-silica capillaries with a square section, which allow a direct determination of protein concentration profiles during transient adsorption and desorption. Diffuse, self-similar profiles are observed and used to determine the equilibrium protein binding capacity and the protein diffusivity in the gel. Mass-transfer rates are found to be essentially independent of the external solution concentration, but to vary dramatically with the gel polymer concentration. A Fickian diffusion model with a flux based on the adsorbed-phase concentration gradient is consistent with the experimentally determined concentration profiles for both positive and negative protein concentration steps. The equilibrium and rate parameters determined for the capillary-supported gels also compare favorably with those obtained from macroscopic measurements using composite ion-exchange media comprising similar gels held within the pores of porous silica particles. [source]


    Characterization of chitin,metal silicates as binding superdisintegrants

    JOURNAL OF PHARMACEUTICAL SCIENCES, Issue 12 2009
    Iyad Rashid
    Abstract When chitin is used in pharmaceutical formulations, processing of chitin with metal silicates is advantageous, from both an industrial and pharmaceutical perspective, compared to processing using silicon dioxide. Unlike the use of acidic and basic reagents for the industrial preparation of chitin,silica particles, coprecipitation of metal silicates is dependent upon a simple replacement reaction between sodium silicate and metal chlorides. When coprecipitated onto chitin particles, aluminum, magnesium, or calcium silicates result in nonhygroscopic, highly compactable/disintegrable compacts. Disintegration and hardness parameters for coprocessed chitin compacts were investigated and found to be independent of the particle size. Capillary action appears to be the major contributor to both water uptake and the driving force for disintegration of compacts. The good compaction and compression properties shown by the chitin,metal silicates were found to be strongly dependent upon the type of metal silicate coprecipitated onto chitin. In addition, the inherent binding and disintegration abilities of chitin,metal silicates are useful in pharmaceutical applications when poorly compressible and/or highly nonpolar drugs need to be formulated. © 2009 Wiley-Liss, Inc. and the American Pharmacists Association J Pharm Sci 98:4887,4901, 2009 [source]


    Towards an understanding of adsorption behaviour in non-aqueous systems: adsorption of poly(vinyl pyrrolidone) and poly(ethylene glycol) onto silica from 2H, 3H-perfluoropentane

    JOURNAL OF PHARMACY AND PHARMACOLOGY: AN INTERNATI ONAL JOURNAL OF PHARMACEUTICAL SCIENCE, Issue 11 2005
    Alison Paul
    The adsorption behaviour of low molecular weight poly(ethylene glycol) (PEG 600) and poly(vinyl pyrrolidone) (PVP K25) to silica particles has been investigated at room temperature (21°C) in the partially fluorinated solvent 2H,3H-perfluoropentane (HPFP). PVP (absorbed amount, , = 12 mgg,1) was found to adsorb more strongly than PEG (, = 4 mgg,1). Both of these values were higher than observed in water. In a further distinction to the aqueous case, where PVP displaces PEG from the interface, no competitive adsorption effects were observed between these two polymers in HPFP, with the adsorbed amounts of each polymer being unchanged by the presence of the other. The stability of silica suspensions in HPFP was primarily dependent on the presence of PVP; PEG/silica systems were unstable, but PVP/silica and PEG/PVP/silica systems formed stable suspensions. All suspensions were destabilized by the addition of small (0.15 wt%) amounts of water. The observations made in this work would point to a flocculation phenomenon due to the addition of water, and not Ostwald ripening. The mechanism of this destabilization is likely to be water acting as a flocculation bridge between particles. [source]


    Nanoscale uniformity of pore architecture in diatomaceous silica: a combined small and wide angle x-ray scattering study

    JOURNAL OF PHYCOLOGY, Issue 1 2000
    Engel G. Vrieling
    Combined small and wide angle X-ray scattering (SAXS and WAXS) analysis was applied to purified biogenic silica of cultured diatom frustules and of natural populations sampled on marine tidal flats. The overall WAXS patterns did not reveal crystalline phases (WAXS domain between 0.07 to 0.5 nm) in this biogenic silica, which is in line with previous reports on the amorphous character of the SiO2 matrix of diatom frustules. One exception was the silica of the pennate species Cylindrotheca fusiformis Reimann et Lewin, which revealed wide peaks in the WAXS spectra. These peaks either indicate the presence of a yet unknown crystalline phase with a repetitive distance (d -value ,0.06 nm) or are caused by the ordering of the fibrous silica fragments; numerous girdle bands. The SAXS spectra revealed the size range of pores (diameter d between 3.0 and 65 nm), the presence of distinct pores (slope transitions), and structure factors (oscillation of the spectra). All slopes varied in the range of ,4.0 to ,2.5, with two clear common regions among species: d < 10 nm (slopes ,4, denoted as region I and also called the Porod region), and 10.0 < d < 40.0 nm (slopes ,2.9 to ,3.8, denoted as region II). The existence of these common regions suggests the presence of comparable form (region I) and structure (region II) factors, respectively the shape of the primary building units of the silica and the geometry of the pores. Contrast variation experiments using dibromomethane to fill pores in the SiO2 matrix showed that scattering was caused by pores rather than silica particles. Electron microscopic analysis confirmed the presence of circular, elliptical, and rectangular pores ranging in size from 3 to 65 nm, determining the structure factor. The fine architecture (length/width ratio of pore diameters) and distribution of the pores, however, seemed to be influenced by environmental factors, such as the salinity of and additions of AlCl3 to the growth medium. The results indicate that diatoms deposit silica with pores <50 nm in size and are highly homologous with respect to geometry. Consequently, it is suggested that in diatoms, whether pennate or centric, the formation of silica at a nanoscale level is a uniform process. [source]