Silica Capillary Column (silica + capillary_column)

Distribution by Scientific Domains

Kinds of Silica Capillary Column

  • fused silica capillary column


  • Selected Abstracts


    Performance of wide-pore monolithic silica column in protein separation

    JOURNAL OF SEPARATION SCIENCE, JSS, Issue 15-16 2009
    Hironobu Morisaka
    Abstract A monolithic wide-pore silica column was newly prepared for protein separation. The wide distribution of the pore sizes of monolithic columns was evaluated by mercury porosimetry. This column, as well as the conventional monolithic column, shows high permeability in the chromatographic separation of low-molecular-sized substances. In higher-molecular-sized protein separation, the wide-pore monolithic silica column shows better performance than that of the conventional monolithic column. Under optimized conditions, five different proteins , ribonuclease A, albumin, aldolase, catalase, and ferritin , were baseline-separated within 3 min, which is faster than that using the particle-packed columns. In addition, the monolithic wide-pore silica column could also be prepared in fused silica capillary (600 mm long, 0.2 mm i.d.) for highly efficient protein separation. The peak capacity of the wide-pore monolithic silica capillary column is estimated to be approximately 300 in the case of protein separation, which is a characteristic performance. [source]


    Determination of ,-caprolactam migration from polyamide plastics: a new approach

    PACKAGING TECHNOLOGY AND SCIENCE, Issue 1 2001
    Z. Pogorzelska
    Abstract A new gas chromatography method for determination of ,-caprolactam (CPR) migration from packaging materials such as: polyamide (PA) films, PA granulates, PA/PE (polyethylene) laminates, PA casings, etc., to food simulants has been developed. Water, 3% w/v acetic acid, 15% and 95% v/v ethanol and olive oil have been used as a food simulants. Using the 1,4-butanediol (BUG) as an internal standard (instead of aza-2-cyclononanone), calibration curves were constructed. Very good separation of CPR from BUG was achieved by using a Nukol fused silica capillary column (Supelco), 25 m,×,0.32,mm. The time of analysis is shorter than 12 min: 7.69,min for BUG and 11.60,min for CPR. The regression line equation for CPR migration to water is: y,=,0.080x,+,0.14; to olive oil: y,=,0.010x. The sensitivity of the developed method is appropriate for the quantitative determination of CPR in an analyte concentration of approximately 0.2,mg/kg, when the specific migration limit (SML) for this compound, according to Directive 90/128/EEC, is 15,mg/kg food simulant. Copyright © 2001 John Wiley & Sons, Ltd. [source]


    Semi-online nanoflow liquid chromatography/matrix-assisted laser desorption ionization mass spectrometry of synthetic polymers using an octadecylsilyl-modified monolithic silica capillary column

    RAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 13 2010
    Takehiro Watanabe
    We have designed a semi-online liquid chromatography/matrix-assisted laser desorption/ionization mass spectrometry (LC/MALDI-MS) system to introduce eluent from a octadecylsilyl (ODS) group modified monolithic silica capillary chromatographic column directly onto a sample plate for MALDI-MS analysis. Our novel semi-online system is useful for rapidly and sensitively examining the performance of a monolithic capillary column. An additional advantage is the small elution volume of a monolithic capillary column, which allows delicate eluents, such as 1,1,1,3,3,3,-hexafluoroisopropyl alcohol (HFIP), to be used to achieve cost-effective analysis. Using the semi-online LC/MALDI-MS system, chromatographic separation of polymers by the monolithic column with different eluents was studied. Separation of poly(methyl methacrylate) and Nylon 6/6 showed that the column functioned via size-exclusion separation when tetrahydrofuran or HFIP eluent was used. On the other hand, the separation behavior of Nylon 11 indicated a reversed-phase mode owing to the interaction of the polymer with the modified ODS group in the column. Using tetrahydrofuran/methanol (1:1, v/v) as the eluent, the LC/MALDI-MS spectra of poly(lactic acid), which contains both linear and cyclic polymer structures, showed that the column could separate the hydrophobic cyclic polymer and elute it out relatively slowly. The monolithic column functions basically via size-exclusion separation; the reversed-phase separation by interaction with the ODS functions may have less influence on column separation. The semi-online monolithic capillary LC/MALDI-MS method we have developed should provide a means of effectively analyzing synthetic polymers. Copyright © 2010 John Wiley & Sons, Ltd. [source]


    Enantioselective analysis of primaquine and its impurity quinocide by capillary electrophoresis

    BIOMEDICAL CHROMATOGRAPHY, Issue 3 2009
    Abdalla A. Elbashir
    Abstract A capillary electrophoretic (CE) method for the baseline separation of the enantiomers of primaquine diphosphate (PQ) and quinocide (QC) (a major contaminant) in pharmaceutical formulations is proposed. Both components were separated under the following conditions: 50 mm tris phosphate buffer (pH 3.0) containing 15 mm hydroxypropyl- , -cyclodextrin (HP- , -CD) as background electrolyte; applied voltage, 16 kV; capillary temperature, 25°C; detection wavelength, 254 nm; hydrostatic injection, 10 s. The separations were conducted using a 35 cm length and 50 µm i.d. uncoated fused silica capillary column. Under the optimized conditions, the components were successfully separated in about 5 min. Intraday precision of migration time and corrected peak areas when expressed as relative standard deviation ranged from 0.17 to 0.45 and 2.60 to 3.94%, respectively, while the interday precision ranged from 2.59 to 4.20 and 3.15 to 4.21%, respectively. After the validation exercise, the proposed method was applied for the determination of QC impurity in PQ formulations. Copyright © 2008 John Wiley & Sons, Ltd. [source]


    Protein Fractionation of Cowpea (Vigna unguiculata (L.) Walp) Leaf, Flower and Seed by Capillary Electrophoresis and Its Potential for Variety Identification

    CHINESE JOURNAL OF CHEMISTRY, Issue 4 2010
    Sirithon Siriamornpun
    Abstract The proteins of different faction of cowpea [Vigna unguiculata (L.) Walp] were fractionated by capillary electrophoresis (CE). The extracting solvent system was one of the most critical factors in the optimization exercise. To improve reproducibility, seed samples needed to be defatted with chloroform/methanol (V:V=2:1) as preferred prior to protein extraction. Proteins were extracted from seeds, leaves and flowers with 50% aqueous 1-propanol and separated on a 50 (m×20 cm fused silica capillary column using a UV detector at 200 nm. Separation was conducted at constant voltage (10 kV, 40°C), using iminodiacetic acid (pH 2.5) containing 0.05% hydroxypropylmethylcellulose (HPMC) and 20% acetonitile. The results showed that proteins extracted from all fraction of cowpea were successfully separated by CE in less than 20 min. Seed extracts provided the greatest number of eluted protein peaks, followed by flower and leaf, respectively. The seed-protein extracts provided unique CE patterns for different varieties; hence the seed was the tissue chosen as being most suitable for variety identification. As a result, an optimized procedure was developed to provide rapid identification of cowpea varieties, based on capillary electrophoregram patterns. [source]


    Approaches for the coating of capillary columns with highly phenylated stationary phases for high-temperature GC

    JOURNAL OF SEPARATION SCIENCE, JSS, Issue 4 2004
    Bernhard X. Mayer-Helm
    Abstract Two highly phenylated tetramethyl- p -silphenylene,diphenylsiloxane copolymers were coated on fused silica capillary columns and used as stationary phases in GC. The copolymers offered new insights into the coating process and column preparation due to their physicochemical properties. The fused silica capillary surface had to be pretreated in various ways to achieve a homogeneous film and a well deactivated surface: etching with ammonium bifluoride; leaching with sodium hydroxide and hydrochloric acid; silylation with tetraphenyldimethyldisilazane and triphenylsilylamine. Droplet formation was observed on tetraphenyldimethyldisilazane silylated surfaces leading to capillary columns with low separation efficiency. The topology of inhomogeneous films was investigated by light microscopy, scanning electron microscopy, and Auger electron spectroscopy. It became apparent that the stationary phase did not form droplets but islands, which are connected by a wetting layer according to the Stranski-Krastanov growth mode. Both copolymers are potential stationary phases for high-temperature GC with promising properties. They offer a higher overall polarity than 75% phenyl, 25% methyl-polysiloxanes in combination with increased thermal stability and reduced bleed levels. [source]