Silencing Pathways (silencing + pathway)

Distribution by Scientific Domains


Selected Abstracts


Genes involved in the RNA interference pathway are differentially expressed during sea urchin development

DEVELOPMENTAL DYNAMICS, Issue 11 2007
Jia L. Song
Abstract RNA-mediated interference (RNAi) is a conserved gene silencing mechanism that involves double-stranded RNA as a signal to trigger the sequence-specific degradation of target mRNA, resulting in posttranscriptional silencing and/or translational repression. Bioinformatic searches in the sea urchin genome database identified homologs of Drosha, DGCR5, Dicer, TRBP, Exportin-5, and Argonautes. Quantitative, real-time polymerase chain reaction indicated that all mRNA accumulate in eggs and in variable levels throughout early development. Whole-mount in situ RNA hybridization showed that all of the important players of the RNAi silencing pathway have abundant mRNA accumulation in oocytes and eggs, but have distinct spatial and temporal expression patterns throughout development. Sequence analysis revealed that each of the four Argonautes examined contain conserved residues important for RNAseH activity within the Piwi domain. This study elucidated that genes involved in the RNAi silencing pathway have dynamic expression and, thus, may have regulatory roles during germ cell development and embryogenesis. Developmental Dynamics 236:3180,3190, 2007. © 2007 Wiley-Liss, Inc. [source]


Alteration of enhancer of polycomb 1 at 10p11.2 is one of the genetic events leading to development of adult T-cell leukemia/lymphoma

GENES, CHROMOSOMES AND CANCER, Issue 9 2009
Shingo Nakahata
Adult T-cell leukemia/lymphoma (ATLL) is a malignant tumor caused by latent human T-lymphotropic virus 1 (HTLV-1) infection. We previously identified a common breakpoint cluster region at 10p11.2 in acute-type ATLL by spectral karyotyping. Single nucleotide polymorphism array comparative genomic hybridization analysis of the breakpoint region in three ATLL-related cell lines and four patient samples revealed that the chromosomal breakpoints are localized within the enhancer of polycomb 1 (EPC1) gene locus in an ATLL-derived cell line (SO4) and in one patient with acute-type ATLL. EPC1 is a human homologue of the E(Pc) enhancer of polycomb gene of Drosophila. Inappropriate expression of the polycomb group gene family has been linked to the loss of normal gene silencing pathways, which can contribute to the loss of cell identity and malignant transformation in many kinds of cancers. In the case of the SO4 cell line, which carried a der(10)t(2;10)(p23;p11.2) translocation, EPC1 was fused with the additional sex combs-like 2 (ASXL2) gene at 2p23.3 (EPC1/ASXL2). In the case with an acute-type ATLL, who carried a der(10)del(10)(p11.2)del(10)(q22q24) translocation, a putative truncated EPC1 gene (EPC1tr) was identified. Overexpression of EPC1/ASXL2 enhanced cell growth in T-leukemia cells, and a GAL4-EPC1/ASXL2 fusion protein showed high transcriptional activity. Although a GAL4-EPC1tr fusion protein did not activate transcription, overexpression of EPC1tr accelerated cell growth in leukemia cells, suggesting that the EPC1 structural abnormalities in the SO4 cell line and in the patient with acute-type ATLL may contribute to leukemogenesis. © 2009 Wiley-Liss, Inc. [source]


Analysis of expressed sequence tags for Frankliniella occidentalis, the western flower thrips

INSECT MOLECULAR BIOLOGY, Issue 4 2010
D. Rotenberg
Abstract Thrips are members of the insect order Thysanoptera and Frankliniella occidentalis (the western flower thrips) is the most economically important pest within this order. F. occidentalis is both a direct pest of crops and an efficient vector of plant viruses, including Tomato spotted wilt virus (TSWV). Despite the world-wide importance of thrips in agriculture, there is little knowledge of the F. occidentalis genome or gene functions at this time. A normalized cDNA library was constructed from first instar thrips and 13 839 expressed sequence tags (ESTs) were obtained. Our EST data assembled into 894 contigs and 11 806 singletons (12 700 nonredundant sequences). We found that 31% of these sequences had significant similarity (E, 10,10) to protein sequences in the National Center for Biotechnology Information nonredundant (nr) protein database, and 25% were functionally annotated using Blast 2GO. We identified 74 sequences with putative homology to proteins associated with insect innate immunity. Sixteen sequences had significant similarity to proteins associated with small RNA-mediated gene silencing pathways (RNA interference; RNAi), including the antiviral pathway (short interfering RNA-mediated pathway). Our EST collection provides new sequence resources for characterizing gene functions in F. occidentalis and other thrips species with regards to vital biological processes, studying the mechanism of interactions with the viruses harboured and transmitted by the vector, and identifying new insect gene-centred targets for plant disease and insect control. [source]


Polerovirus protein P0 prevents the assembly of small RNA-containing RISC complexes and leads to degradation of ARGONAUTE1

THE PLANT JOURNAL, Issue 3 2010
Tibor Csorba
Summary RNA silencing plays an important role in plants in defence against viruses. To overcome this defence, plant viruses encode suppressors of RNA silencing. The most common mode of silencing suppression is sequestration of double-stranded RNAs involved in the antiviral silencing pathways. Viral suppressors can also overcome silencing responses through protein,protein interaction. The poleroviral P0 silencing suppressor protein targets ARGONAUTE (AGO) proteins for degradation. AGO proteins are the core component of the RNA-induced silencing complex (RISC). We found that P0 does not interfere with the slicer activity of pre-programmed siRNA/miRNA containing AGO1, but prevents de novo formation of siRNA/miRNA containing AGO1. We show that the AGO1 protein is part of a high-molecular-weight complex, suggesting the existence of a multi-protein RISC in plants. We propose that P0 prevents RISC assembly by interacting with one of its protein components, thus inhibiting formation of siRNA/miRNA,RISC, and ultimately leading to AGO1 degradation. Our findings also suggest that siRNAs enhance the stability of co-expressed AGO1 in both the presence and absence of P0. [source]