Silane Coupling Agent (silane + coupling_agent)

Distribution by Scientific Domains


Selected Abstracts


The Effect of Silane Coupling Agents on the Viscoelastic Properties of Rubber Biocomposites

MACROMOLECULAR MATERIALS & ENGINEERING, Issue 9 2006
Maya Jacob
Abstract Summary: This paper deals with the dynamic mechanical study of sisal/oil palm hybrid fiber reinforced natural rubber composites (at frequency 1 Hz) with reference to the role of silane coupling agents. Composites were prepared using sisal and oil palm fibers subjected to chemical modifications with different types of silane coupling agents. The silanes used were Silane F8261 [1,1,2,2-perfluorooctyl triethoxy silane], Silane A1100 [, -aminopropyltriethoxy silane] and Silane A151 [vinyl triethoxy silane]. It was observed that for treated composites, storage modulus and loss modulus increased while the damping property was found to decrease. Maximum E' was exhibited by the composite prepared from fibers treated with silane F8261 and minimum by composites containing fibers treated with silane A151. This was attributed to the reduced moisture absorbing capacity of chemically modified fibers leading to improved wetting. This in turn produced a strong interfacial interface giving rise to a much stiffer composite with higher modulus. Surface characterization of treated and untreated sisal fibers by XPS showed the presence of numerous elements on the surface of the fiber. Scanning electron micrographs of tensile fracture surfaces of treated and untreated composites demonstrated better fiber,matrix bonding for the treated composites. Scheme of interaction of silanes with cellulosic fibers. [source]


Effects of coupling agents on the oxidation and darkening of cellulosic materials used as reinforcements for thermoplastic matrices in composites

POLYMER ENGINEERING & SCIENCE, Issue 2 2000
J. Martínez Urreaga
Oxidation and darkening occur during the processing of composites made from thermoplastic matrices and cellulosic reinforcements. We have studied the effects of several coupling agents on both the oxidation and darkening of cellulosic materials at temperatures close to those used in the processing of cellulose-reinforced thermoplastics. A maleated polypropylene wax (Epolene E-43TM) and two silanes (N-2-aminoethyl-3-aminopropyltrimethoxy silane and methyltrimethoxysilane) were used as coupling agents. Oxidation was measured by Diffuse Reflectance Infrared Fourier Transform (DRIFT) spectroscopy. Standard colorimetry was used to measure darkening. Coupling agent effects depend on the nature and extent of cellulose modification achieved by treatments and the nature of the coupling agent. Epolene wax E-43 produced scarce effects on both the oxidation and darkening of cellulosic materials at 200°C. Only for longer oxidation times was an increase in oxidation and darkening observed in E-43-treated samples. Silane coupling agents inhibited the formation of carbonyl and carboxyl groups for shorter oxidation times. The diaminosilane produced a stronger darkening, probably due to a chemical reaction that generated new chromophores containing CN bonds. [source]


Measurement of the condensation temperature of nanosilica powder organically modified by a silane coupling agent and its effect evaluation

JOURNAL OF APPLIED POLYMER SCIENCE, Issue 5 2008
Xiao Liu
Abstract The proper condensation temperatures of nanosilica powder modified by silane coupling agents such as 3-methacryloxypropyl trimethoxy silane (MEMO), [3-(2-aminoethyl)aminopropyl] trimethoxy silane (AMMO), and bis[3-(triethoxysilyl)propyl] disulfide (TESPD) were measured with Fourier transform infrared. Moreover, the structure and properties of solution-polymerized styrene,butadiene rubber (SSBR) filled with nanosilica powder that was organically modified by the three silane coupling agents at different temperatures were investigated. The results showed that the proper condensation temperatures of nanosilica powder modified by MEMO, AMMO, and TESPD were about 80, 80, and 100°C, respectively. Compared with SSBR filled with silica powder, SSBR filled with silica powder modified by a silane coupling agent exhibited not only better filler-dispersion and mechanical properties but also lower internal friction loss in a selected range of strains. Furthermore, when the organic modification was carried out at the proper condensation temperature, the improvement of the modification effect became more obvious. Among these silane coupling agents, AMMO presented the most remarkable modification effect for nanosilica. The mechanism of modification for silica powder and its enhancement of the properties of SSBR were examined. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 [source]


Effect of silane KH-550 to polypropylene/brucite composite

JOURNAL OF APPLIED POLYMER SCIENCE, Issue 2 2008
Zhiling Ma
Abstract The effect of the KH-550 type silane coupling agent on the properties of polypropylene (PP)/brucite (BC) composite was studied. X-ray diffraction, scanning electron microscope, and polarization optical microscope indicated that morphology structure of PP changed with the addition of KH-550, which activated the heterogeneous nucleation centers on BC surface, which made the distribution of the spherulite diameter become narrow and uniform, and improved the dispersibility of BC in the matrix. Therefore, KH-550 enhanced the interfacial adhesion of matrix-filler and improved the compatibility of the PP/BC composite, when KH-550's content was 2.9% the tensile strength and impact strength increased approximately by 90% and by 30%, respectively than PP/BC. Flow tests and IR proved that some reactions took place between BC and KH-550. All the investigations showed KH-550 was a proper coupling agent in the PP/BC composite. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 [source]


An alternative approach to the modification of talc for the fabrication of polypropylene/talc composites

JOURNAL OF APPLIED POLYMER SCIENCE, Issue 1 2007
Tao Wang
Abstract We report an alternative method to modify talc for use in the fabrication of composites of polypropylene (PP) and talc. Grinding pulverization is employed to prepare talc fillers (referred to hereafter as p -talc). The properties of composites made with p -talc compare favorably with composites made with pulverized talc that has been further treated with a silane coupling agent (referred to as s -talc). The morphology of PP/p -talc composites illustrates particle orientation and a uniform dispersion of pulverized talc in the PP matrix. Modulated DSC analysis shows the ability of p -talc and s -talc to nucleate PP crystallization. The mechanical properties (i.e., the dynamic modulus, tensile strength, and impact resistance) of the PP/p -talc composites are very similar to PP/s -talc composites. The modification of talc by grinding is thus a highly effective alternative method to prepare PP/talc composites that does not require chemical treatment of the talc. The pulverization method is simpler and less expensive in comparison to silane treatment. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007 [source]


Preparation, morphology, and adhesive and mechanical properties of ultrahigh-molecular-weight polyethylene/SiO2 nanocomposite fibers

POLYMER COMPOSITES, Issue 4 2010
Yi Zhang
A simple treatment approach has been performed to achieve enhanced surface properties of ultrahigh-molecular-weight polyethylene (UHMWPE) fibers by incorporation of nano-silicon dioxide (SiO2) in the presence of silane coupling agent during gel-spinning process. The SiO2 -treated UHMWPE (UHMWPE/SiO2) nanocomposite fibers with different nano-SiO2 compositions were characterized with Fourier transform infrared spectra, scanning electron microscopy, and wide-angle X-ray diffraction, and their interfacial adhesion and mechanical properties were also investigated. The nano-SiO2 can be trapped on the surface of the fibers to form rough surface for UHMWPE/SiO2 fibers, and diffused into the inner of fibers to induce the lower crystal sizes and higher crystallinity of polyethylene in UHMWPE/SiO2 fibers. The resulting UHMWPE/SiO2 fibers therefore exhibit a dramatic enhancement in the adhesive properties because of the combination of rougher surface compared with those of UHMWPE fiber and polar groups absorbed on the surface of fibers. The mechanical properties of UHMWPE/SiO2 nanocomposite fibers are enhanced simultaneously because of the influence of nano-SiO2 on the structure of UHMWPE crystalline regions and fibrils. POLYM. COMPOS., 2010. © 2009 Society of Plastics Engineers [source]


Impact fracture behavior of PP/EPDM/glass bead ternary composites

POLYMER ENGINEERING & SCIENCE, Issue 9 2000
J. Z. Liang
The effects of glass bead filler content and surface treatment of the glass with a silane coupling agent on the room temperature impact fracture behavior of polypropylene (PP)/ethylene-propylene-diene monomer copolymer (EPDM)/glass bead(GB) ternary composites were determined. The volume fraction of EPDM was kept constant at 10%. The impact fracture energy and impact strength of the composites increased with increasing volume fraction of glass beads (,g). Surface pretreatment of the glass beads had an insignificant effect on the impact behavior. For a fixed filler content, the best impact strength was achieved when untreated glass beads and a maleic anhydride modified EPDM were used. The impact strength exhibited a maximum value at ,g=15%. Morphology/impact property relationships and an explanation of the toughening mechanisms were developed by comparing the impact properties with scanning electron micrographs of fracture surfaces. [source]


Organoclay,natural rubber nanocomposites synthesized by mechanical and solution mixing methods

POLYMER INTERNATIONAL, Issue 11 2004
MA López-Manchado
Abstract This investigation describes two methods to obtain rubber composites based on natural rubber (NR) and organophilic layered silicates. In order to improve the exfoliation and compatibilization of the organoclays with the rubber matrix, a new approach which involves swelling of the organoclays with an elastomer solution prior to compounding has been used. The effect of the addition during swelling of a coupling agent, namely bis(trietoxysilylpropyl)tetrasulfan (TESPT), on the behaviour of the composites was also investigated. The results show that a low amount of organoclay (10 phr) significantly improves the properties of natural rubber. This suggests a strong rubber,organoclay interaction which is attributed to a high degree of rubber intercalation into the nanosilicate galleries, as was confirmed from X-ray diffraction. In addition, an ulterior improvement in the properties of the nanocomposites prepared by solution mixing is clearly observed, due to the better filler,rubber compatibility. An even further increase in the properties is observed by treating the silicate with a silane coupling agent. The silane functional groups modify the clay surface, thus reducing the surface energy, and consequently improving the compatibility with the rubber matrix. Copyright © 2004 Society of Chemical Industry [source]


Flexibility improvement of epoxy resin by liquid rubber modification

POLYMER INTERNATIONAL, Issue 9 2002
C Kaynak
Abstract The objective of this study was to improve the flexibility of diglycidyl ether of bisphenol-A based epoxy resin by using a liquid rubber. For this purpose, hydroxyl terminated polybutadiene (HTPB) was used at two concentrations of 1,% and 1.5,% by weight. In order to improve compatibility between liquid rubber and epoxy, a silane coupling agent (SCA) was also used. Bending test specimens were moulded by using four different orders of mixing of HTPB with SCA and hardener to investigate the compatibility of HTPB and epoxy matrix. Three-point bending tests indicated that the specimens containing HTPB rubber had higher flexibility than neat epoxy specimens. Moreover, liquid rubber modification resulted in increased plastic strain at failure due to the possible decrease in crosslinking density with the change in reactions path. Fractographic examinations under scanning electron microscope indicated the formation of rubber domains in the epoxy matrix. The deformed rubber domains and increased incidence of deformation lines, especially in the third and fourth group specimens, assessed the improvement in flexibility. © 2002 Society of Chemical Industry [source]


Preparation of Al(OH)3/PMMA nanocomposites by emulsion polymerization

POLYMERS FOR ADVANCED TECHNOLOGIES, Issue 12 2008
S. Y. Park
Abstract Al(OH)3/PMMA nanocomposites were prepared by the emulsion polymerization of methyl methacrylate (MMA) in the presence of surface-functionalized Al(OH)3 particles. Nanosized Al(OH)3 particles were previously functionalized with a silane coupling agent, 3-(trimethoxysilyl) propyl methacrylate (, -MPS), which was confirmed by FT-IR and XRF analysis. The average size of seed particles was around 70,nm, and the density of the coupling agent on the particles was calculated to be 8.9,µmol,m,2. The emulsion polymerization was attempted at relatively high solid content of 40,46,wt%. The ratio of the seed particles to MMA had a strong influence on the stability of latex as well as the morphology of composites. Nanocomposites where several PMMA nodules were attached on the surface of Al(OH)3 core were produced with stable latex emulsion when the weight percents of Al(OH)3 to MMA were below 20. In the case of higher ratio of 30%, however, the latexes became unstable with an aggregation, and the product morphology was in the shape of large composite. Thermogravimetric analysis showed an improved thermal stability of PMMA composites with the incorporation of Al(OH)3 nanoparticles. Copyright © 2008 John Wiley & Sons, Ltd. [source]


Surface modification of inorganic oxide particles with silane coupling agent and organic dyes

POLYMERS FOR ADVANCED TECHNOLOGIES, Issue 5 2001
Jun Lin
Abstract The silane coupling agent 3-glycidoxypropyl trimethoxylsilane (GPS) was grafted onto the surface of silica gel, P2 glass beads and TiO2 oxide particles. FT-IR, thermogravimetric and elemental analysis were used to characterize the modified particles. The effects of various factors on the GPS grafting efficiency such as catalyst, GPS concentration, reaction temperature and time were studied. After modification with GPS, the xanthene dye rhodamine B and azo dyes 4-phenylazophenol and 4-phenylazoaniline, respectively, were grafted on to the particles, which were then used as pigment fillers. The colors of the pigments were adjusted by changing the kind of dyes, the concentration, the pH and the reaction solvents. Copyright © 2001 John Wiley & Sons, Ltd. [source]


Experimental Evaluation of the V-Point Heparin-Bonding System Applied to a Dense-Membrane Artificial Lung During 24-Hour Extracorporeal Circulation in Beagles

ARTIFICIAL ORGANS, Issue 8 2001
Masafumi Tashiro
Abstract: Heparin was covalently bonded to a hollow-fiber dense-membrane artificial lung and circuit using a silane coupling agent and polyethyleneimine as a spacer. This study investigated whether the novel artificial lung could sustain prolonged extracorporeal lung assist (ECLA) by venoarterial bypass in beagles using minimal anticoagulants. We maintained ECLA for 24 h in 3 groups of minimal systemic heparinization, heparinization with the new anticoagulant nafamostat mesilate, and without any systemic anticoagulant. The results were assessed from the functional performance of the artificial lung and by macroscopic and microscopic examination after the experiments. Artificial lung function, hemodynamics, hemogram, and platelet aggregation activity were well maintained in all groups. There was no plasma leakage from the artificial lung. Although several clots were observed in stagnant areas of the artificial lungs and circuits, there was no clot formation inside the artificial lung in any group. This highly biocompatible, heparin-bonded dense-membrane artificial lung performed well and safely during prolonged ECLA with blood clotting times less than 120 s. [source]


A General Approach to Fabricate Diverse Noble-Metal (Au, Pt, Ag, Pt/Au)/Fe2O3 Hybrid Nanomaterials

CHEMISTRY - A EUROPEAN JOURNAL, Issue 27 2010
Jun Zhang Dr.
Abstract A novel, facile, and general one-pot strategy is explored for the synthesis of diverse noble-metal (Au, Pt, Ag, or Pt/Au)/Fe2O3 hybrid nanoparticles with the assistance of lysine (which is a nontoxic, user friendly amino acid that is compatible with organisms) and without using any other functionalization reagents. Control experiments show that lysine, which contains both amino and carboxylic groups, plays dual and crucial roles as both linker and capping agents in attaching noble metals with a small size and uniform distribution onto an Fe2O3 support. Considering the perfect compatibility of lysine with organism, this approach may find potentials in biochemistry and biological applications. Furthermore, this novel route is also an attractive alternative and supplement to the current methods using a silane coupling agent or polyelectrolyte for preparing hybrid nanomaterials. To demonstrate the usage of such hybrid nanomaterials, a chemical gas sensor has been fabricated from the as-synthesized Au/Fe2O3 nanoparticles and investigated for ethanol detection. Results show that the hybrid sensor exhibits significantly improved sensor performances in terms of high sensitivity, low detection limit, better selectivity, and good reproducibility in comparison with pristine Fe2O3. Most importantly, this general approach can be further employed to fabricate other hybrid nanomaterials based on different support materials. [source]


Cover Picture: Fabrication of Stable Metallic Patterns Embedded in Poly(dimethylsiloxane) and Model Applications in Non-Planar Electronic and Lab-on-a-Chip Device Patterning (Adv. Funct.

ADVANCED FUNCTIONAL MATERIALS, Issue 4 2005
Mater.
Abstract A composite image is shown that highlights examples of device architectures that either incorporate or exploit polymer-embedded metallic microstructures. In work reported by Nuzzo and co-workers on p.,557, new applications of soft lithography, in conjunction with advanced forms of multilayer metallization, are used to construct these exceptionally durable structures. They are suitable for use in non-planar lithographic patterning, and as device components finding applications ranging from microelectronics to Lab-on-a-Chip analytical systems. This article describes the fabrication of durable metallic patterns that are embedded in poly(dimethylsiloxane) (PDMS) and demonstrates their use in several representative applications. The method involves the transfer and subsequent embedding of micrometer-scale gold (and other thin-film material) patterns into PDMS via adhesion chemistries mediated by silane coupling agents. We demonstrate the process as a suitable method for patterning stable functional metallization structures on PDMS, ones with limiting feature sizes less than 5,,m, and their subsequent utilization as structures suitable for use in applications ranging from soft-lithographic patterning, non-planar electronics, and microfluidic (lab-on-a-chip, LOC) analytical systems. We demonstrate specifically that metal patterns embedded in both planar and spherically curved PDMS substrates can be used as compliant contact photomasks for conventional photolithographic processes. The non-planar photomask fabricated with this technique has the same surface shape as the substrate, and thus facilitates the registration of structures in multilevel devices. This quality was specifically tested in a model demonstration in which an array of one hundred metal oxide semiconductor field-effect transistor (MOSFET) devices was fabricated on a spherically curved Si single-crystalline lens. The most significant opportunities for the processes reported here, however, appear to reside in applications in analytical chemistry that exploit devices fabricated using the methods of soft lithography. Toward this end, we demonstrate durably bonded metal patterns on PDMS that are appropriate for use in microfluidic, microanalytical, and microelectromechanical systems. We describe a multilayer metal-electrode fabrication scheme (multilaminate metal,insulator,metal (MIM) structures that substantially enhance performance and stability) and use it to enable the construction of PDMS LOC devices using electrochemical detection. A polymer-based microelectrochemical analytical system, one incorporating an electrode array for cyclic voltammetry and a microfluidic system for the electrophoretic separation of dopamine and catechol with amperometric detection, is demonstrated. [source]


Measurement of the condensation temperature of nanosilica powder organically modified by a silane coupling agent and its effect evaluation

JOURNAL OF APPLIED POLYMER SCIENCE, Issue 5 2008
Xiao Liu
Abstract The proper condensation temperatures of nanosilica powder modified by silane coupling agents such as 3-methacryloxypropyl trimethoxy silane (MEMO), [3-(2-aminoethyl)aminopropyl] trimethoxy silane (AMMO), and bis[3-(triethoxysilyl)propyl] disulfide (TESPD) were measured with Fourier transform infrared. Moreover, the structure and properties of solution-polymerized styrene,butadiene rubber (SSBR) filled with nanosilica powder that was organically modified by the three silane coupling agents at different temperatures were investigated. The results showed that the proper condensation temperatures of nanosilica powder modified by MEMO, AMMO, and TESPD were about 80, 80, and 100°C, respectively. Compared with SSBR filled with silica powder, SSBR filled with silica powder modified by a silane coupling agent exhibited not only better filler-dispersion and mechanical properties but also lower internal friction loss in a selected range of strains. Furthermore, when the organic modification was carried out at the proper condensation temperature, the improvement of the modification effect became more obvious. Among these silane coupling agents, AMMO presented the most remarkable modification effect for nanosilica. The mechanism of modification for silica powder and its enhancement of the properties of SSBR were examined. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008 [source]


The Effect of Silane Coupling Agents on the Viscoelastic Properties of Rubber Biocomposites

MACROMOLECULAR MATERIALS & ENGINEERING, Issue 9 2006
Maya Jacob
Abstract Summary: This paper deals with the dynamic mechanical study of sisal/oil palm hybrid fiber reinforced natural rubber composites (at frequency 1 Hz) with reference to the role of silane coupling agents. Composites were prepared using sisal and oil palm fibers subjected to chemical modifications with different types of silane coupling agents. The silanes used were Silane F8261 [1,1,2,2-perfluorooctyl triethoxy silane], Silane A1100 [, -aminopropyltriethoxy silane] and Silane A151 [vinyl triethoxy silane]. It was observed that for treated composites, storage modulus and loss modulus increased while the damping property was found to decrease. Maximum E' was exhibited by the composite prepared from fibers treated with silane F8261 and minimum by composites containing fibers treated with silane A151. This was attributed to the reduced moisture absorbing capacity of chemically modified fibers leading to improved wetting. This in turn produced a strong interfacial interface giving rise to a much stiffer composite with higher modulus. Surface characterization of treated and untreated sisal fibers by XPS showed the presence of numerous elements on the surface of the fiber. Scanning electron micrographs of tensile fracture surfaces of treated and untreated composites demonstrated better fiber,matrix bonding for the treated composites. Scheme of interaction of silanes with cellulosic fibers. [source]


Characterization and properties of activated nanosilica/polypropylene composites with coupling agents

POLYMER COMPOSITES, Issue 11 2009
Ong Hui Lin
In this work, nanosilica/polypropylene composites containing 1 wt% of silica nanoparticles were prepared by melt mixing in a Thermo Haake internal mixer. Prior compounding, nanosilica was subjected to surface activation using sodium hydroxide (NaOH) solution. The effectiveness of the activation process was evaluated by measuring the amount of hydroxyl groups (OH) on the surface of nanosilica via titration method and supported by FTIR analysis. Two coupling agents namely 3-aminopropyl triethoxysilane (APTES) and neopentyl (diallyl)oxy, tri(dioctyl) phosphate titanate (Lica 12) were used for surface treatment after activation process. The mechanical properties of polypropylene matrix reinforced with silica nanoparticles were determined by tensile and impact test. Hydroxyl groups on the nanosilica surface played an important role in enhancing the treatment with silane coupling agents. To increase the amount of hydroxyl groups on the nanosilica surface, the optimum concentration of NaOH is 1 mol%. Tensile strength, tensile modulus, and impact strength of nanosilica/PP composites improved with activation process. As the coupling agent is concerned, APTES coupling agent is more pronounced in enhancing the mechanical properties of the composites when compared with Lica 12 coupling agent. POLYM. COMPOS., 2009. © 2008 Society of Plastics Engineers [source]


Surface modification of bagasse fibers by silane coupling agents through microwave oven and its effects on physical, mechanical, and rheological properties of PP bagasse fiber composite

POLYMER COMPOSITES, Issue 6 2007
S.A. Hashemi
Polypropylene/bagasse fiber composites were prepared by compounding polypropylene (PP) with bagasse fibers as reinforcing filler. Surfaces of fibers were modified through the use of silane coupling agents (Vinyltrimethoxysilane and ,-Glycidoxypropyltrimethoxysilane). The fiber coating was performed by mixing of silane with fibers and cured through microwave oven in presence of catalyst. It was found that modification of surface fiber will change the physical, mechanical, morphological, and rheological properties of composite. It was observed from scanning electron microscopy that fiber adhesion to matrix has been improved and so as dispersion. Addition of fibers increases the melt viscosity in unmodified fibers but reduced the melt viscosity for modified fibers and even the viscosity is lower at higher loading compared with unmodified fibers. The tensile strength and tensile modulus increased in modified fibers compared with the unmodified on the same loading, but elongation at break decreased. The effect of coupling agent on properties of filled PP depend on the content of coupling agents and optimum amount was achieve through measurement of water absorption. Two types of coupling agents were used, one as A-171 [CH2CHSi (OCH3)3] and second one as A-187 [CH2OCHCH2O (CH2)3Si(OCH3)], the first one shows better adhesion to the fibers and improvements in mechanical properties are much better compared with the second one. POLYM. COMPOS., 28:713,721, 2007. © 2007 Society of Plastics Engineers [source]


Improvement of the interfacial compatibility between sugar cane bagasse fibers and polystyrene for composites

POLYMER COMPOSITES, Issue 2 2004
Edgar García-Hernández
Sugar cane bagasse fibers were modified by surface treatments using either physical or chemical methods in order to improve their adhesion to polystyrene matrices. The surface treatment methods used were alkaline treatment, treatment with silane coupling agents, physical coating with polystyrene and grafting of polystyrene with and without crosslinker. Fiber modifications were monitored by Fourier Transform Infrared Spectroscopy (FTIR), Differential Thermal Analysis coupled with Thermogravimetric Analysis (DTA-TGA) and Scanning Electron Microscopy (SEM). On the other hand, the improvement of the adhesion between sugar cane modified fibers and polystyrene was assessed by micromechanical pull-out and by macromechanical Iosipescu tests. It was found, from Interfacial Shear Strength values (IFSS), that substantial improvements in fiber-matrix compatibility were achieved. According to micro- and macromechanical test results, the IFSS increased for all treated fibers as compared to non-treated fibers. Particularly, both the coating the fibers or grafting with polystyrene using crosslinker resulted in substantial adhesion improvement to the polystyrene matrix in comparison with the non-treated fibers and fibers treated by alkaline and silane methods only. Polym. Compos. 25:134,145, 2004. © 2004 Society of Plastics Engineers. [source]


The effect of interface characteristics on the static and dynamic mechanical properties of three-component polymer alloys

POLYMER COMPOSITES, Issue 3 2002
I. Fisher
The effect of interfacial characteristics on the structure-property relationships of ternary polymer alloys and blends comprising polypropylene (PP), ethylene-vinyl alcohol copolymer (EVOH) and glass beads (GB) or fibers (GF) was investigated. The systems studied were based on a binary PP/EVOH immiscible blend, representing a blend of a semi-crystalline apolar polymer with a semi-crystalline highly polar copolymer. The ternary systems studied consisted of filler particles encapsulated by EVOH, with some of the minor EVOH component separately dispersed within the PP matrix. Modification of the interfacial properties was done using silane coupling agents for the EVOH/glass interface and compatibilization using a maleic anhydride grafted PP (MA-g-PP) for the PP/EVOH interface. Both glass fillers increased the dynamic modulus and decreased the damping of the neat polymers and of their binary blends, especially in the rubbery region. GF has a more profound effect on both the modulus and the damping. Glass surface treatments and compatibilization have only a marginal effect on the dynamic mechanical behavior of the ternary blends. Yet, compatibilization shifted the polymers' TgS to higher temperatures. Both glass fillers increased the elastic modulus of the binary blends, where GF performed better than GB as a reinforcing agent. GF slightly increased the strength of the binary blends while, GB reduced it. Both fillers reduced the ductility of the binary blends. The blends' mechanical properties were related to the morphology and their components' crystallinity. The compatibilizer increases both stiffness and strength and reduces deformability. [source]


Effect of sawdust surface treatment and compatibilizer addition on mechanical behavior, morphology, and moisture uptake of polypropylene/sawdust composites

POLYMER ENGINEERING & SCIENCE, Issue 5 2010
Silvia H.P. Bettini
Polypropylene/sawdust composites were investigated to assess the effect of sawdust surface treatment and compatibilizer addition on polymer/fiber adhesion. Two silane coupling agents were used for sawdust surface treatment: vinyl-tris (2-methoxyethoxy) silane and (3-aminopropyl)triethoxysilane. Maleic anhydride grafted polypropylene was used as compatibilizer. Composites were prepared in a corotating twin-screw extruder coupled to a Haake torque rheometer and submitted to tensile and bending tests as well as scanning electron microscopy (SEM). Moisture uptake tests were also performed. Results showed that incorporation of untreated sawdust to polypropylene (PP) caused reduction in composite tensile strength and increase in stiffness. When the only treatment used was surface modification with silane coupling agents, no significant changes were observed in mechanical properties. However, when compatibilizer was added to the composites, tensile strength was increased, and % elongation at break reduced, indicating improved system compatibility. The composite presenting the highest increase in tensile strength was that containing sawdust treated with amino silane in addition to the compatibilizer. SEM analyses corroborated the mechanical property results. POLYM. ENG. SCI., 2010. © 2009 Society of Plastics Engineers [source]