Significant Oxidative Stress (significant + oxidative_stress)

Distribution by Scientific Domains


Selected Abstracts


Occurrence of oxidative impairments, response of antioxidant defences and associated biochemical perturbations in male reproductive milieu in the Streptozotocin-diabetic rat

INTERNATIONAL JOURNAL OF ANDROLOGY, Issue 6 2007
B. Shrilatha
Summary Oxidative stress is implicated to play a vital role in the pathogenesis of various diabetic complications. While reproductive dysfunction is a well recognized consequence of diabetes mellitus, the underlying mechanisms are poorly understood. The present study aims to obtain insights into the incidence, extent and progression of oxidative impairments in testis and epididymal sperm (ES) in streptozotocin (STZ)-induced diabetic rat during early and progressive phase. Adult rats (CFT-Wistar strain) rendered diabetic by an acute dose of STZ (60 mg/kg bw, i.p.) were examined for induction of hyperglycaemia at 72 h, followed by the assessment of oxidative impairments in testis and ES over a 6-week period. Oxidative damage was ascertained by measuring the malondialdehyde levels, reactive oxygen species (ROS) generation, alterations in antioxidant defences and extent of protein oxidation. STZ induced a significant (2.5-fold) increase in blood glucose levels. In diabetic rats, both testis and ES showed enhanced status of lipid peroxidation measured as increased TBARS and ROS from week 2 onwards. These impairments in testis were consistent, progressive and accompanied by marked alterations in antioxidant defences and elevated protein carbonyls. Varying degree of reduction in the specific activities of antioxidant enzymes was evident in testis and ES, while the activity of glutathione- S -transferase (GST) was significantly elevated. Reduced glutathione (GSH) and vitamin E levels were consistently reduced in testis. Lipid dysmetabolism measured in terms of increased cholesterol, triglycerides and phospholipids was evident only beyond week 2 in diabetic testis. Taken together, these results indicate that the testis and ES are indeed subjected to significant oxidative stress in the STZ-diabetic rat both during early as well as progressive phase. It is hypothesized that oxidative impairments in testis which develop over time may at least in part contribute towards the development of testicular dysfunction eventually leading to testicular degeneration which culminates in reduced fertility during the progressive phase of STZ-induced diabetes in adult rats. [source]


Chronic Ethanol Consumption Results in Atypical Liver Injury in Copper/Zinc Superoxide Dismutase Deficient Mice

ALCOHOLISM, Issue 2 2010
Tiana V. Curry-McCoy
Background:, Ethanol metabolism increases production of reactive oxygen species, including superoxide () in the liver, resulting in significant oxidative stress, which causes cellular damage. Superoxide dismutase (SOD) is an antioxidant enzyme that converts superoxide to less toxic intermediates, preventing accumulation. Because the absence of SOD would confer less resistance to oxidative stress, we determined whether damage to hepatic proteolytic systems was greater in SOD,/, than in SOD+/+ mice after chronic ethanol feeding. Methods:, Female wild-type (SOD+/+) and Cu/Zn-SOD knockout (SOD,/,) mice were pair-fed ethanol and control liquid diets for 24 days, after which liver injury was assessed. Results:, Ethanol-fed SOD,/, mice had 4-fold higher blood ethanol, 2.8-fold higher alanine aminotransferase levels, 20% higher liver weight, a 1.4-fold rise in hepatic protein levels, and 35 to 70% higher levels of lipid peroxides than corresponding wild-type mice. While wild-type mice exhibited fatty liver after ethanol administration, SOD,/, mice showed no evidence of ethanol-induced steatosis, although triglyceride levels were elevated in both groups of knockout mice. Ethanol administration caused no significant change in proteasome activity, but caused lysosomal leakage in livers of SOD,/, mice but not in wild-type mice. Alcohol dehydrogenase activity was reduced by 50 to 60% in ethanol-fed SOD,/, mice compared with all other groups. Additionally, while ethanol administration induced cytochrome P450 2E1 (CYP2E1) activity in wild-type mice, it caused no such induction in SOD,/, mice. Unexpectedly, ethanol feeding significantly elevated total and mitochondrial levels of glutathione in SOD knockout mice compared with wild-type mice. Conclusion:, Ethanol-fed SOD,/, mice exhibited lower alcohol dehydrogenase activity and lack of CYP2E1 inducibility, thereby causing decreased ethanol metabolism compared with wild-type mice. These and other atypical responses to ethanol, including the absence of ethanol-induced steatosis and enhanced glutathione levels, appear to be linked to enhanced oxidative stress due to lack of antioxidant enzyme capacity. [source]


Ethanol Self-Administration and Alterations in the Livers of the Cynomolgus Monkey, Macaca fascicularis

ALCOHOLISM, Issue 1 2007
Priscilla Ivester
Background: Most of the studies of alcoholic liver disease use models in which animals undergo involuntary administration of high amounts of ethanol and consume diets that are often high in polyunsaturated fatty acids. The objectives of this study were (1) to evaluate whether cynomolgus monkeys (Macaca fascicularis) drinking ethanol voluntarily and consuming a diet with moderate amounts of lipid would demonstrate any indices of alcoholic liver disease past the fatty liver stage and (2) to determine whether these alterations were accompanied by oxidative stress. Methods: Six adult male and 6 adult female cynomolgus monkeys were allowed to consume ethanol voluntarily for 18 to 19 months. Additional monkeys were maintained on the same consumption protocol, but were not provided with ethanol. During the course of the study, liver biopsy samples were monitored for lipid deposition and inflammation, serum for levels of liver enzymes, and urine for concentrations of the isoprostane (IsoP) metabolite, 2,3-dinor-5,6-dihydro-15-F2t -IsoP, a biomarker for oxidative stress. Liver mitochondria were monitored for respiratory control and liver for concentrations of neutral lipids, adenine nucleotides, esterified F2 isoprostanes, oxidized proteins, 4-hydroxynonenal (HNE)-protein adducts, and protein levels of cytochrome P-450 2E1 and 3A4. Results: Ethanol consumption ranged from 0.9 to 4.05 g/kg/d over the period of the study. Serum levels of aspartate amino transferase were elevated in heavy-consuming animals compared with those in ethanol-naïve or moderate drinkers. Many of the ethanol consumers developed fatty liver and most showed loci of inflammation. Both hepatic energy charge and phosphorylation potential were decreased and NADH-linked respiration was slightly, but significantly depressed in coupled mitochondria as a result of heavy ethanol consumption. The urinary concentrations of 2,3-dinor-5,6-dihydro-15-F2t -IsoP increased as high as 33-fold over that observed in ethanol-abstinent animals. Liver cytochrome P-450 2E1 concentrations increased in ethanol consumers, but there were no ethanol-elicited increases in hepatic concentrations of the esterified F2 isoprostanes, oxidized proteins, or HNE-protein adducts. Conclusion: Our studies show that cynomolgus monkeys undergoing voluntary ethanol consumption for 1.5 years exhibit many of the features observed in the early stages of human alcoholic liver disease. Ethanol-elicited fatty liver, inflammation, and elevated serum aspartate amino transferase were evident with a diet that contained modest amounts of polyunsaturated lipids. The dramatic increases in urinary IsoP demonstrated that the animals were being subjected to significant oxidative stress that correlated with their level of ethanol consumption. [source]


Proteomic analysis of sera of asymptomatic, early-stage patients with Wilson's disease

PROTEOMICS - CLINICAL APPLICATIONS, Issue 10 2009
Jung-Young Park
Abstract Wilson's disease (WD) is characterized by excessive accumulation of intracellular copper in liver and extrahepatic tissues, leading to significant oxidative stress and tissue damage. To date, several diagnostic biomarkers for WD such as serum ceruloplasmin, serum or urine copper levels and copper content in liver have been identified. However, these biomarkers may not be convincing for the diagnosis in some WD patients. To identify additional novel diagnostic biomarkers, we compared the serum protein profiles of asymptomatic childhood WD patients (n=20), without neurologic manifestation or liver cirrhosis, with normal controls (n=13). Fourteen spots, five up-regulated and nine down-regulated (>2-fold), were differentially expressed in WD patients in comparison to normal control on 2-DE. Among them, three spots were down-regulated in both male and female WD. MS/MS analysis revealed that the three spots were complement component C3, complement factor B and alpha-2 macroglobulin. By comparative proteome analysis, complement component C3, complement factor B and alpha-2 macroglobulin, which are related to oxidative stress and inflammation, turned out to be good candidates for novel diagnostic biomarkers for early stages of WD. [source]