Signalling Cascades (signalling + cascade)

Distribution by Scientific Domains
Distribution within Life Sciences


Selected Abstracts


Hybrid Lethality in Interspecific F1 Hybrid Nicotiana gossei×N. tabacum Involves a MAP-Kinases Signalling Cascade

PLANT BIOLOGY, Issue 3 2007
M. Mino
Abstract: A cultured cell line, GTH4 (Nicotiana gossei Domin ×N. tabacum L.), which exhibits hybrid lethality, died at 26 °C, but not at 37 °C. Pharmacological experiments using inhibitors of protein phosphatases and protein kinases indicated the involvement of a protein kinase signalling pathway in the cell death process. Immunoblot analysis revealed that salicylic acid-induced protein kinase (SIPK) was phosphorylated soon after the shift in temperature from 37 °C to 26 °C. Cultured cells of the hybrid of N. gossei× transgenic N. tabacum harboring a steroid (dexamethasone; DEX)-inducible NtMEK2DD or NtMEK2KR, constitutively active and inactive forms of NtMEK2, respectively, were established. Induction of NtMEK2DD by DEX in the hybrid cells induced the activation of SIPK, the generation of hydrogen peroxide (H2O2), and cell death at 37 °C. The activation of SIPK, generation of H2O2, and cell death at 26 °C were compromised by DEX treatment in hybrid cells harbouring NtMEK2KR. This study provides evidence for the involvement of MAPK signalling in the regulation of cell death in hybrids. [source]


Emerging topics in Reelin function

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 9 2010
Eckart Förster
Abstract Reelin signalling in the early developing cortex regulates radial migration of cortical neurons. Later in development, Reelin promotes maturation of dendrites and dendritic spines. Finally, in the mature brain, it is involved in modulating synaptic function. In recent years, efforts to identify downstream signalling events induced by binding of Reelin to lipoprotein receptors led to the characterization of novel components of the Reelin signalling cascade. In the present review, we first address distinct functions of the Reelin receptors Apoer2 and Vldlr in cortical layer formation, followed by a discussion on the recently identified downstream effector molecule n-cofilin, involved in regulating actin cytoskeletal dynamics required for coordinated neuronal migration. Next, we discuss possible functions of the recently identified Reelin,Notch signalling crosstalk, and new aspects of the role of Reelin in the formation of the dentate radial glial scaffold. Finally, progress in characterizing the function of Reelin in modulating synaptic function in the adult brain is summarized. The present review has been inspired by a session entitled ,Functions of Reelin in the developing and adult hippocampus', held at the Spring Hippocampal Research Conference in Verona/Italy, June 2009. [source]


Recruitment of the Sonic hedgehog signalling cascade in electroconvulsive seizure-mediated regulation of adult rat hippocampal neurogenesis

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 7 2005
Sunayana B. Banerjee
Abstract Electroconvulsive seizure (ECS) induces structural remodelling in the adult mammalian brain, including an increase in adult hippocampal neurogenesis. The molecular mechanisms that underlie this increase in the proliferation of adult hippocampal progenitors are at present not well understood. We hypothesized that ECS may recruit the Sonic hedgehog (Shh) pathway to mediate its effects on adult hippocampal neurogenesis, as Shh is known to enhance the proliferation of neuronal progenitors and is expressed in the adult basal forebrain, a region that sends robust projections to the hippocampus. Here we demonstrate that the ECS-induced increase in proliferation of adult hippocampal progenitors was completely blocked in animals treated with cyclopamine, a pharmacological inhibitor of Shh signalling. Our results suggest that both acute and chronic ECS enhance Shh signalling in the adult hippocampus, as we observed a robust upregulation of Patched (Ptc) mRNA, a component of the Shh receptor complex and a downstream transcriptional target of Shh signalling. This increase was rapid and restricted to the dentate gyrus, where the adult hippocampal progenitors reside. In addition, both acute and chronic ECS decreased Smoothened (Smo) mRNA, the other component of the Shh receptor complex, selectively within the dentate gyrus. However, ECS did not appear to influence Shh expression within the basal forebrain, the site from which it has been suggested to be anterogradely transported to the hippocampus. Together, our findings demonstrate that ECS regulates the Shh signalling cascade and indicate that the Shh pathway may be an important mechanism through which ECS enhances adult hippocampal neurogenesis. [source]


A human-specific TNF-responsive promoter for Goodpasture antigen-binding protein

FEBS JOURNAL, Issue 20 2005
Froilán Granero
The Goodpasture antigen-binding protein, GPBP, is a serine/threonine kinase whose relative expression increases in autoimmune processes. Tumor necrosis factor (TNF) is a pro-inflammatory cytokine implicated in autoimmune pathogenesis. Here we show that COL4A3BP, the gene encoding GPBP, maps head-to-head with POLK, the gene encoding for DNA polymerase kappa (pol ,), and shares with it a 140-bp promoter containing a Sp1 site, a TATA-like element, and a nuclear factor kappa B (NF,B)-like site. These three elements cooperate in the assembly of a bidirectional transcription complex containing abundant Sp1 and little NF,B that is more efficient in the POLK direction. Tumour necrosis factor cell induction is associated with Sp1 release, NF,B recruitment and assembly of a complex comparatively more efficient in the COL4A3BP direction. This is accomplished by competitive binding of Sp1 and NF,B to a DNA element encompassing a NF,B-like site that is pivotal for the 140-bp promoter to function. Consistently, a murine homologous DNA region, which contains the Sp1 site and the TATA-like element but is devoid of the NF,B-like site, does not show transcriptional activity in transient gene expression assays. Our findings identify a human-specific TNF-responsive transcriptional unit that locates GPBP in the signalling cascade of TNF and substantiates previous observations, which independently related TNF and GPBP with human autoimmunity. [source]


Regulation of nitrogen metabolism in Mycobacterium tuberculosis: A comparison with mechanisms in Corynebacterium glutamicum and Streptomyces coelicolor

IUBMB LIFE, Issue 10 2008
Catriona Harper
Abstract The mechanisms governing the regulation of nitrogen metabolism in Corynebacterium glutamicum and Streptomyces coelicolor have been extensively studied. These Actinomycetales are closely related to the Mycobacterium genus and may therefore serve as a models to elucidate the cascade of nitrogen signalling in other mycobacteria. Some factors involved in nitrogen metabolism in Mycobacterium tuberculosis have been described, including glutamine synthetase and its adenylyltransferase, but not much data concerning the other components involved in the signalling cascade is available. In this review a comparative study of factors involved in nitrogen metabolism in C. glutamicum and S. coelicolor is made to identify similarities with M. tuberculosis on both a genomic and proteomic level. This may provide insight into a potential global mechanism of nitrogen control in Mycobacterium tuberculosis. © 2008 IUBMB IUBMB Life, 60(10): 643,650, 2008 [source]


Neurulation in the cranial region , normal and abnormal

JOURNAL OF ANATOMY, Issue 5 2005
Andrew J. Copp
Abstract Cranial neurulation is the embryonic process responsible for formation of the brain primordium. In the mouse embryo, cranial neurulation is a piecemeal process with several initiation sites and two neuropores. Variation in the pattern of cranial neurulation occurs in different mouse strains, and a simpler version of this morphogenetic scheme has been described in human embryos. Exencephaly is more common in females than in males, an unexplained phenomenon seen in both mice and humans. As the cranial neural tube closes, a critical morphogenetic event is the formation of dorsolateral bending points near the neural fold tips, which enables subsequent midline fusion of the neural folds. Many mutant and gene-targeted mouse strains develop cranial neural tube defects, and analysis of the underlying molecular defects identifies several requirements for normal dorsolateral bending. These include a functional actin cytoskeleton, emigration of the cranial neural crest, spatio-temporally regulated apoptosis, and a balance between cell proliferation and the onset of neuronal differentiation. A small number of mouse mutants exhibit craniorachischisis, a combined brain and spine neurulation defect. Recent studies show that disturbance of a single molecular signalling cascade, the planar cell polarity pathway, is implicated in mutants with this defect. [source]


Cellular repressor of E1A-stimulated genes attenuates cardiac hypertrophy and fibrosis

JOURNAL OF CELLULAR AND MOLECULAR MEDICINE, Issue 7 2009
Zhouyan Bian
Abstract Cellular repressor of E1A-stimulated genes (CREG) is a secreted glycoprotein of 220 amino acids. It has been proposed that CREG acts as a ligand that enhances differentiation and/or reduces cell proliferation. CREG has been shown previously to attenuate cardiac hypertrophy in vitro. However, such a role has not been determined in vivo. In the present study, we tested the hypothesis that overexpression of CREG in the murine heart would protect against cardiac hypertrophy and fibrosis in vivo. The effects of constitutive human CREG expression on cardiac hypertrophy were investigated using both in vitro and in vivo models. Cardiac hypertrophy was produced by aortic banding and infusion of angiotensin II in CREG transgenic mice and control animals. The extent of cardiac hypertrophy was quantitated by two-dimensional and M-mode echocardiography as well as by molecular and pathological analyses of heart samples. Constitutive over-expression of human CREG in the murine heart attenuated the hypertrophic response, markedly reduced inflammation. Cardiac function was also preserved in hearts with increased CREG levels in response to hypertrophic stimuli. These beneficial effects were associated with attenuation of the mitogen-activated protein kinase (MAPK)-extracellular signal-regulated kinase 1 (MEK-ERK1)/2-dependent signalling cascade. In addition, CREG expression blocked fibrosis and collagen synthesis through blocking MEK-ERK1/2-dependent Smad 2/3 activation in vitro and in vivo. Therefore, the expression of CREG improves cardiac functions and inhibits cardiac hypertrophy, inflammation and fibrosis through blocking MEK-ERK1/2-dependent signalling. [source]


Myogenesis and molecules, insights from zebrafish Danio rerio

JOURNAL OF FISH BIOLOGY, Issue 8 2009
S.-W. Chong
Myogenesis is a fundamental process governing the formation of muscle in multicellular organisms. Recent studies in zebrafish Danio rerio have described the molecular events occurring during embryonic morphogenesis and have thus greatly clarified this process, helping to distinguish between the events that give rise to fast v. slow muscle. Coupled with the well-known Hedgehog signalling cascade and a wide variety of cellular processes during early development, the continual research on D. rerio slow muscle precursors has provided novel insights into their cellular behaviours in this organism. Similarly, analyses on fast muscle precursors have provided knowledge of the behaviour of a sub-set of epitheloid cells residing in the anterior domain of somites. Additionally, the findings by various groups on the roles of several molecules in somitic myogenesis have been clarified in the past year. In this study, the authors briefly review the current trends in the field of research of D. rerio trunk myogenesis. [source]


Nociceptive and behavioural sensitisation by protein kinase C, signalling in the CNS

JOURNAL OF NEUROCHEMISTRY, Issue 1 2008
Kristof Van Kolen
Abstract Despite the apparent homology in the protein kinase C (PKC) family, it has become clear that slight structural differences are sufficient to have unique signalling properties for each individual isoform. For PKC, in depth investigation of these aspects revealed unique actions in the CNS and lead to development of specific modulators with clinical perspective. In this review, we describe to which extent PKC, is distinct from other isoforms on the level of tissue expression and protein structure. As this kinase is highly expressed in the brain, we outline three main aspects of PKC, signalling in the CNS. First, its ability to alter the permeability of N-type Ca2+ channels in dorsal root ganglia has been shown to enhance nociception. Secondly, PKC, increases anxiety by diminishing GABAAR-induced inhibitory post-synaptic currents in the prefrontal cortex. Another important aspect of the latter inhibition is the reduced sensitivity of GABAA receptors to ethanol, a mechanism potentially contributing to abuse. A third signalling cascade improves cognitive functions by facilitating cholinergic signalling in the hippocampus. Collectively, these findings point to a physical and behavioural sensitising role for this kinase. [source]


A novel sensor kinase,response regulator hybrid regulates type III secretion and is required for virulence in Pseudomonas aeruginosa

MOLECULAR MICROBIOLOGY, Issue 4 2004
Michelle A. Laskowski
Summary The type III secretion system (TTSS) of Pseudomonas aeruginosa is induced by contact with eukaryotic cells and by growth in low-calcium media. We have identified a protein, RtsM, that is necessary for expression of the TTSS genes in P. aeruginosa. RtsM possesses both histidine kinase and response regulator domains common to two-component signalling proteins, as well as a large predicted periplasmic domain and seven transmembrane domains. Deletion of rtsM resulted in a defect in production and secretion of the type III effectors. Northern blot analysis revealed that mRNAs encoding the effectors ExoT and ExoU are absent in the ,rtsM strain under TTSS-inducing conditions. Using transcriptional fusions, we demonstrated that RtsM is required for transcription of the operons encoding the TTSS effectors and apparatus in response to calcium limitation or to host cell contact. The operon encoding the TTSS regulator ExsA does not respond to calcium limitation, but the basal transcription rate of this operon was lower in ,rtsM than in the wild-type parent, PA103. The defect in TTSS effector production and secretion of ,rtsM could be complemented by overexpressing ExsA or Vfr, two transcriptional activators involved in TTSS regulation. ,rtsM was markedly less virulent than PA103 in a murine model of acute pneumonia, demonstrating that RtsM is required in vivo. We propose that RtsM is a sensor protein at the start of a signalling cascade that induces expression of the TTSS in response to environmental signals. [source]


Nitric oxide-induced phosphatidic acid accumulation: a role for phospholipases C and D in stomatal closure

PLANT CELL & ENVIRONMENT, Issue 2 2008
AYELEN M. DISTÉFANO
ABSTRACT Stomatal closure is regulated by a complex network of signalling events involving numerous intermediates, among them nitric oxide (NO). Little is known about the signalling events occurring downstream of NO. Previous studies have shown that NO modulates cytosolic calcium concentration and the activation of plasma membrane ion channels. Here we provide evidence that supports the involvement of the lipid second messenger phosphatidic acid (PA) in NO signalling during stomatal closure. PA levels in Vicia faba epidermal peels increased upon NO treatment to maximum levels within 30 min, subsequently decreasing to control levels at 60 min. PA can be generated via phospholipase D (PLD) or via phospholipase C (PLC) in concerted action with diacylglycerol kinase (DGK). Our results showed that NO-induced PA is produced via the activation of both pathways. NO-induced stomatal closure was blocked either when PLC or PLD activity was inhibited. We have shown that PLC- and PLD-derived PA represents a downstream component of NO signalling cascade during stomatal closure. [source]


Changes in mitogen-activated protein kinase activity occur in the maize pulvinus in response to gravistimulation and are important for the bending response

PLANT CELL & ENVIRONMENT, Issue 7 2003
A. M. CLORE
ABSTRACT The maize (Zea mays L.) pulvinus was used as a model system to study the signalling events that lead to differential growth in response to gravistimulation in plants. The pulvinus functions to return tipped plants to vertical via differential elongation of the cells on its lower side. By performing immunokinase assays using total soluble protein extracts and an antibody against mammalian ERK1, a mitogen-activated protein kinase (MAPK)-like activity was assayed in pulvini halves harvested at various time points after tipping. We detected a reproducible alternation of higher levels of activity occurring between the upper and lower halves of the pulvinus between 75 and 180 min after tipping, with a sustained increase in the upper half occurring at the end of the time-course. This timing roughly corresponds to the presentation time for maize (i.e. the amount of time that the plant needs to be tipped before it is committed to bend), which occurs between 2 and 4 h. Treatment of maize stem explants with an inhibitor of MAPK activation, U0126, led to a reduction in the activity of this kinase, as well as an almost 65% reduction in bending as measured at 20 h. Rinsing out of the inhibitor resulted in recovery of both bending and kinase activity. It is possible that changes in MAPK activity in the gravistimulated pulvinus are part of a signalling cascade that may help to distinguish between minor perturbations in plant orientation and more significant and long-term changes, and may also help to determine the direction of bending. [source]


Elucidation of the gating of the GIRK channel using a spectroscopic approach

THE JOURNAL OF PHYSIOLOGY, Issue 22 2009
Adi Raveh
The traditional view of G protein-coupled receptor (GPCR)-mediated signalling puts the players in this signalling cascade, namely the GPCR, the G protein and its effector, as individual components in space, where the signalling specificity is obtained mainly by the interaction of the GPCR and the G, subunits of the G protein. A question is then raised as to how fidelity in receptor signalling is achieved, given that many systems use the same components of the G protein signalling machinery. One possible mechanism for obtaining the specific flow of the downstream signals, from the activated G protein to its specific effector target, in a timely manner, is compartmentalization, a spatial arrangement of the complex in a rather restricted space. Here we review our recent findings related to these issues, using the G protein-coupled potassium channel (GIRK) as a model effector and fluorescence-based approaches to reveal how the signalling complex is arranged and how the G protein exerts its action to activate the GIRK channel in intact cells. [source]


Different Ca2+ signalling cascades manifested by mastoparan in the prothoracic glands of the tobacco hornworm, Manduca sexta, and the silkworm, Bombyx mori

ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY (ELECTRONIC), Issue 2 2007
Skarlatos G. Dedos
Abstract Application of the tetradecapeptide mastoparan to the prothoracic glands (PGs) of the tobacco hornworm, Manduca sexta, and the silkworm, Bombyx mori, resulted in increases in intracellular Ca2+ ([Ca2+]i). In M. sexta, Gi proteins are involved in the mastoparan-stimulated increase in [Ca2+]i. However, there is no involvement of Gi proteins in the mastoparan-stimulated increase in [Ca2+]i in prothoracic gland cells from B. mori. Unlike in M. sexta prothoracic glands, in B. mori prothoracic glands mastoparan increases [Ca2+]i even in the absence of extracellular Ca2+. Pharmacological manipulation of the Ca2+ signalling cascades in the prothoracic glands of both insect species suggests that in M. sexta prothoracic glands, mastoparan's first site of action is influx of Ca2+ through plasma membrane Ca2+ channels while in B. mori prothoracic glands, mastoparan's first site of action is mobilization of Ca2+ from intracellular stores. In M. sexta, the combined results indicate the presence of mastoparan-sensitive plasma membrane Ca2+ channels, distinct from those activated by prothoracicotropic hormone or the IP3 signalling cascade, that coordinate spatial increases in [Ca2+]i in prothoracic gland cells. We propose that in B. mori, mastoparan stimulates Ca2+ mobilization from ryanodine-sensitive intracellular Ca2+ stores in prothoracic gland cells. Arch. Insect Biochem. Physiol. 65:52,64, 2007. © 2007 Wiley-Liss, Inc. [source]


TIRs of joy: new receptors for auxin

BIOESSAYS, Issue 12 2005
Richard M. Napier
Back-to-back papers have described the identification of a family of receptors for the plant hormone auxin.(1, 2) Most developmental processes in plants are dependent on auxin signalling making this discovery a landmark in the search for the mechanism of auxin action. The TIR1 gene translates into a protein with recognised motifs including an F-box domain and TIR1 forms part of an important ubiquitination complex that tags other proteins for degradation.(3) Specific amongst the targets of TIR1 are a set of auxin-regulated transcription factors.(4) The latest work has shown that TIR1 itself is also the binding site for auxin making it an auxin receptor with no requirement for a biochemical signalling cascade. BioEssays 27:1213,1217, 2005. © 2005 Wiley Periodicals, Inc. [source]


Enterohaemorrhagic Escherichia coli Tir requires a C-terminal 12-residue peptide to initiate EspFU -mediated actin assembly and harbours N-terminal sequences that influence pedestal length

CELLULAR MICROBIOLOGY, Issue 9 2006
Kenneth G. Campellone
Summary Enterohaemorrhagic Escherichia coli (EHEC) and enteropathogenic E. coli (EPEC) both utilize type III secretion systems that translocate the effector protein Tir into the plasma membrane of mammalian cells in order to stimulate localized actin assembly into ,pedestals'. The Tir molecule that EPEC delivers is phosphorylated within its C-terminus on tyrosine-474, and a clustered 12-residue phosphopeptide encompassing this residue initiates an efficient signalling cascade that triggers actin polymerization. In addition to Y474, tyrosine-454 of EPEC Tir is phosphorylated, although inefficiently, and promotes actin polymerization at low levels. In contrast to EPEC Tir, EHEC Tir lacks Y474 and triggers pedestal formation in a phosphotyrosine-independent manner by interacting with an additional effector protein, EspFU. To identify EHEC Tir sequences that regulate localized actin assembly, we circumvented the strict requirements for type III translocation and directly expressed Tir derivatives in mammalian cells by transfection. Infection of Tir-expressing cells with a Tir-deficient EHEC strain demonstrated that ectopically expressed Tir localizes to the plasma membrane, is modified by mammalian serine-threonine kinases and is fully functional for actin pedestal formation. Removal of portions of the cytoplasmic N-terminus of Tir resulted in the generation of abnormally long pedestals, indicating that this region of EHEC Tir influences pedestal length. In the presence of the entire N-terminal domain, a 12-residue peptide from the C-terminus of EHEC Tir is both necessary and sufficient to recruit EspFU and initiate actin pedestal formation. This peptide encompasses the portion of EHEC Tir analogous to the EPEC Tir-Y454 region and is present within the Tir molecules of all pedestal-forming bacteria, suggesting that this sequence harbours a conserved signalling function. [source]


Adaptations Of Skeletal Muscle To Prolonged, Intense Endurance Training

CLINICAL AND EXPERIMENTAL PHARMACOLOGY AND PHYSIOLOGY, Issue 3 2002
John A Hawley
SUMMARY 1. Endurance exercise induces a variety of metabolic and morphological responses/adaptations in skeletal muscle that function to minimize cellular disturbances during subsequent training sessions. 2. Chronic adaptations in skeletal muscle are likely to be the result of the cumulative effect of repeated bouts of exercise, with the initial signalling responses leading to such adaptations occurring after each training session. 3. Recently, activation of the mitogen-activated protein kinase signalling cascade has been proposed as a possible mechanism involved in the regulation of many of the exercise-induced adaptations in skeletal muscle. 4. The protein targets of AMP-activated protein kinase also appear to be involved in both the regulation of acute metabolic responses and chronic adaptations to exercise. 5. Endurance training is associated with an increase in the activities of key enzymes of the mitochondrial electron transport chain and a concomitant increase in mitochondrial protein concentration. These morphological changes, along with increased capillary supply, result in a shift in trained muscle to a greater reliance on fat as a fuel with a concomitant reduction in glycolytic flux and tighter control of acid,base status. Taken collectively, these adaptations result in an enhanced performance capacity. [source]


Effects of motilin on intracellular free calcium in cultured smooth muscle cells from the antrum of neonatal rats

ACTA PHYSIOLOGICA, Issue 1 2010
P. Fang
Abstract Aim:, The aim of this study was to determine the effects of motilin on [Ca2+]i regulation and its underlying molecular mechanism in cultured antral smooth muscle cells (ASMCs). Methods:, Antral cells were isolated and cultured from neonatal rats, and then the [Ca2+]i in these cells was evaluated by calcium fluorescent probe Fluo-3/AM on a laser scanning confocal microscope. Results:, We show that motilin dose-dependently increased [Ca2+]i concentration in cultured ASMCs. Pre-incubation of cells with either the calcium antagonist verapamil (10,5 mol L,1) or the calcium chelator Egtazic (EGTA, 0.1 mmol L,1) significantly suppressed motilin (10,6 mol L,1) induced [Ca2+]i increase as indicated by fluorescent intensity. Interestingly, after mixing with the non-selective intracellular calcium release blocker TMB-8 (10,5 mol L,1), guanosine triphosphate regulatory protein antagonist NEM (10,5 mol L,1), phospholipase C (PLC) inhibitor compound 48/80 (1.2 ,g mL,1) and ryanodine at high concentration (10,5 mol L,1), the motilin-induced [Ca2+]i increase was only partially blocked. The protein kinase C inhibitor d -sphingosine (10,6 mol L,1), however, did not show any inhibitory effect on motilin-induced [Ca2+]i elevation. Conclusions:, Our study suggests that motilin-stimulated [Ca2+]i elevation in ASMCs is probably due to sustained extracellular Ca2+ influx and Ca2+ release from Ca2+ stores via inositol tris-phosphate receptors and ryanodine receptors. Specifically, motilin-induced [Ca2+]i release is accompanied with guanosine triphosphate-binding protein-coupled receptor,PLC,inositol tris-phosphate signalling cascades. [source]


Physiological functions of glucose-inhibited neurones

ACTA PHYSIOLOGICA, Issue 1 2009
D. Burdakov
Abstract Glucose-inhibited neurones are an integral part of neurocircuits regulating cognitive arousal, body weight and vital adaptive behaviours. Their firing is directly suppressed by extracellular glucose through poorly understood signalling cascades culminating in opening of post-synaptic K+ or possibly Cl, channels. In mammalian brains, two groups of glucose-inhibited neurones are best understood at present: neurones of the hypothalamic arcuate nucleus (ARC) that express peptide transmitters NPY and agouti-related peptide (AgRP) and neurones of the lateral hypothalamus (LH) that express peptide transmitters orexins/hypocretins. The activity of ARC NPY/AgRP neurones promotes food intake and suppresses energy expenditure, and their destruction causes a severe reduction in food intake and body weight. The physiological actions of ARC NPY/AgRP cells are mediated by projections to numerous hypothalamic areas, as well as extrahypothalamic sites such as the thalamus and ventral tegmental area. Orexin/hypocretin neurones of the LH are critical for normal wakefulness, energy expenditure and reward-seeking, and their destruction causes narcolepsy. Orexin actions are mediated by highly widespread central projections to virtually all brain areas except the cerebellum, including monosynaptic innervation of the cerebral cortex and autonomic pre-ganglionic neurones. There, orexins act on two specific G-protein-coupled receptors generally linked to neuronal excitation. In addition to sensing physiological changes in sugar levels, the firing of both NPY/AgRP and orexin neurones is inhibited by the ,satiety' hormone leptin and stimulated by the ,hunger' hormone ghrelin. Glucose-inhibited neurones are thus well placed to coordinate diverse brain states and behaviours based on energy levels. [source]


Neuronismo y reticulismo: neuronal,glial circuits unify the reticular and neuronal theories of brain organization

ACTA PHYSIOLOGICA, Issue 1 2009
A. Verkhratsky
Abstract The neuronal doctrine, which shaped the development of neuroscience, was born from a long-lasting struggle between reticularists, who assumed internal continuity of neural networks and neuronists, who defined the brain as a network of physically separated cellular entities, defined as neurones. Modern views regard the brain as a complex of constantly interacting cellular circuits, represented by neuronal networks embedded into internally connected astroglial syncytium. The neuronal,glial circuits endowed with distinct signalling cascades form a ,diffuse nervous net' suggested by Golgi, where millions of synapses belonging to very different neurones are integrated first into neuronal,glial,vascular units and then into more complex structures connected through glial syncytium. These many levels of integration, both morphological and functional, presented by neuronal,glial circuitry ensure the spatial and temporal multiplication of brain cognitive power. [source]


Phosphatidylinositol-3-OH kinase regulatory subunits are differentially expressed during development of the rat cerebellum

DEVELOPMENTAL NEUROBIOLOGY, Issue 1 2001
José L. Trejo
Abstract Recent evidence implicates a central role for PI3K signalling in mediating cell survival during the process of neuronal differentiation. Although PI3K activity is stimulated by a wide range of growth factors and cytokines in different cell lines and tissues, activation of this pathway by insulin-like growth factor I (IGF-I) most likely represents the main survival signal during neuronal differentiation. IGF-I is highly expressed during development of the central nervous system, and thus is a critical factor for the development and maturation of the cerebellum. Upon ligand binding, the IGF-I receptor phosphorylates tyrosine residues in SHC and insulin receptor substrates (IRSs) initiating two main signalling cascades, the MAP kinase and the phosphatidylinositol 3-kinase (PI3K) pathways. Activated PI3K is composed of a catalytic subunit (p110, or ,) associated with one of a large family of regulatory subunits (p85,, p85,, p55,, p55,, and p50,). To evaluate the contributions of these various regulatory subunits to neuronal differentiation, we have used antibodies specific for each of the PI3K subunits. Using these antisera, we now demonstrate that PI3K subunits are differentially regulated in cerebellar development, and that the expression level of the p55, regulatory subunit reaches a maximum during postnatal development, decreasing thereafter to low levels in the adult cerebellum. Furthermore, our studies reveal that the distribution of the various PI3K regulatory subunits varies during development of the cerebellum. Interestingly, p55, is expressed in both glial and neuronal cells; moreover, in Purkinje neurones, this subunit colocalises with the IGF-IR. © 2001 John Wiley & Sons, Inc. J Neurobiol 47: 39,50, 2001 [source]


Growth hormone-releasing peptide 6 protection of hypothalamic neurons from glutamate excitotoxicity is caspase independent and not mediated by insulin-like growth factor I

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 11 2009
A. Delgado-Rubín
Abstract Treatment of the fetal hypothalamic neuronal cell line RCA-6 with growth hormone-releasing peptide 6, an agonist of the ghrelin receptor, or insulin-like growth factor I activates intracellular signalling cascades associated with anti-apoptotic actions. Abnormally high concentrations of glutamate provoke over-excitation of neurons leading to cell damage and apoptosis. Thus, the aim of this study was to investigate whether the administration of growth hormone-releasing peptide 6 and insulin-like growth factor I attenuates monosodium glutamate-induced apoptosis in RCA-6 neurons and the mechanisms involved. Two different mechanisms are involved in glutamate-induced cell death, one by means of caspase activation and the second through activation of a caspase-independent pathway of apoptosis mediated by the translocation of apoptosis-inducing factor. Growth hormone-releasing peptide 6 partially reversed glutamate-induced cell death but not the activation of caspases, suggesting blockage of the caspase-independent cell death pathway, which included interference with the translocation of apoptosis-inducing factor to the nucleus associated with the induction of Bcl-2. In contrast, the addition of insulin-like growth factor I to RCA-6 neurons abolished glutamate-induced caspase activation and cell death. These data demonstrate for the first time a neuroprotective role for growth hormone secretagogues in the caspase-independent cell death pathway and indicate that these peptides have neuroprotective effects independent of its induction of insulin-like growth factor I. [source]


Selective chronic stress-induced in vivo ERK1/2 hyperphosphorylation in medial prefrontocortical dendrites: implications for stress-related cortical pathology?

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 10 2002
A. Trentani
Abstract Stress has been shown to affect brain structural plasticity, promote long-term changes in multiple neurotransmitter systems and cause neuronal atrophy. However, the mechanisms involved in these stress-related neural alterations are still poorly understood. Mitogen-activated protein kinase (MAPK) cascades play a crucial role in the transduction of neurotrophic signal from the cell surface to the nucleus and are implicated in the modulation of synaptic plasticity and neuronal survival. An intriguing possibility is that stress might influence brain plasticity through its effects on selective members of such intracellular signalling cascades responsible for the transduction of neurotrophin signals. Here, we have investigated the effects of stress on the expression of three members of the MAPK/extracellular-regulated kinase (ERK) pathway such as phospho-ERK1, phospho-ERK2 and phospho-cAMP/calcium-responsive element-binding protein (CREB) in the adult rat brain. Male rats were subjected to mild footshocks and the patterns of protein expression were analysed after 21 consecutive days of stress. We found that chronic stress induced a pronounced and persistent ERK1/2 hyperphosphorylation in dendrites of the higher prefrontocortical layers (II and III) and a reduction of phospho-CREB expression in several cortical and subcortical regions. We hypothesized that defects in ERK signalling regulation combined with a reduced phospho-CREB activity may be a crucial mechanism by which sustained stress may induce atrophy of selective subpopulations of vulnerable cortical neurons and/or distal dendrites. Thus, ERK-mediated cortical abnormalities may represent a specific path by which chronic stress affects the functioning of cortical structures and causes selective neural network defects. [source]


Death-associated protein kinase (DAPK) and signal transduction: blebbing in programmed cell death

FEBS JOURNAL, Issue 1 2010
Miia Bovellan
Death-associated protein kinase (DAPK) regulates many distinct signalling events, including apoptosis, autophagy and membrane blebbing. The role of DAPK in the blebbing process is only beginning to be understood and, in this review, we will first summarize what is known about the cytoskeletal proteins and signalling cascades that participate in bleb growth and retraction and then highlight how DAPK integrates with these processes. Membrane blebs are quasispherical cellular protrusions that have a lifetime of approximately 2 min. During expansion, blebs are initially devoid of actin, although actomyosin contractions provide the motive force for growth. Once growth slows, an actin cortex reforms and actin-bundling and contractile proteins are recruited. Finally, myosin contraction powers bleb retraction into the cell body. Blebbing occurs in a variety of cell types, from cancerous cells to embryonic cells, and can be seen in cellular phenomena as diverse as cell spreading, movement, cytokinesis and cell death. Although the machinery that executes this is still undefined in detail, the conservation of blebbing phenomenon suggests a fundamental role in metazoans and DAPK offers a door to further dissect this fascinating process. [source]


The Versatility of Helicobacter pylori CagA Effector Protein Functions: The Master Key Hypothesis

HELICOBACTER, Issue 3 2010
Steffen Backert
Abstract Several bacterial pathogens inject virulence proteins into host target cells that are substrates of eukaryotic tyrosine kinases. One of the key examples is the Helicobacter pylori CagA effector protein which is translocated by a type-IV secretion system. Injected CagA becomes tyrosine-phosphorylated on EPIYA sequence motifs by Src and Abl family kinases. CagA then binds to and activates/inactivates multiple signaling proteins in a phosphorylation-dependent and phosphorylation-independent manner. A recent proteomic screen systematically identified eukaryotic binding partners of the EPIYA phosphorylation sites of CagA and similar sites in other bacterial effectors by high-resolution mass spectrometry. Individual phosphorylation sites recruited a surprisingly high number of interaction partners suggesting that each phosphorylation site can interfere with many downstream pathways. We now count 20 reported cellular binding partners of CagA, which represents the highest quantitiy among all yet known virulence-associated effector proteins in the microbial world. This complexity generates a highly remarkable and puzzling scenario. In addition, the first crystal structure of CagA provided us with new information on the function of this important virulence determinant. Here we review the recent advances in characterizing the multiple binding signaling activities of CagA. Injected CagA can act as a ,master key' that evolved the ability to highjack multiple host cell signalling cascades, which include the induction of membrane dynamics, actin-cytoskeletal rearrangements and the disruption of cell-to-cell junctions as well as proliferative, pro-inflammatory and anti-apoptotic nuclear responses. The discovery that different pathogens use this common strategy to subvert host cell functions suggests that more examples will emerge soon. [source]


Role of the metastasis-promoting protein osteopontin in the tumour microenvironment

JOURNAL OF CELLULAR AND MOLECULAR MEDICINE, Issue 8 2010
Pieter H. Anborgh
Abstract Osteopontin (OPN) is a secreted protein present in bodily fluids and tissues. It is subject to multiple post-translational modifications, including phosphorylation, glycosylation, proteolytic cleavage and crosslinking by transglutamination. Binding of OPN to integrin and CD44 receptors regulates signalling cascades that affect processes such as adhesion, migration, invasion, chemotaxis and cell survival. A variety of cells and tissues express OPN, including bone, vasculature, kidney, inflammatory cells and numerous secretory epithelia. Normal physiological roles include regulation of immune functions, vascular remodelling, wound repair and developmental processes. OPN also is expressed in many cancers, and elevated levels in patients' tumour tissue and blood are associated with poor prognosis. Tumour growth is regulated by interactions between tumour cells and their tissue microenvironment. Within a tumour mass, OPN can be expressed by both tumour cells and cellular components of the tumour microenvironment, and both tumour and normal cells may have receptors able to bind to OPN. OPN can also be found as a component of the extracellular matrix. The functional roles of OPN in a tumour are thus complex, with OPN secreted by both tumour cells and cells in the tumour microenvironment, both of which can in turn respond to OPN. Much remains to be learned about the cross-talk between normal and tumour cells within a tumour, and the role of multiple forms of OPN in these interactions. Understanding OPN-mediated interactions within a tumour will be important for the development of therapeutic strategies to target OPN. [source]


Spatial insulin signalling in isolated skeletal muscle preparations

JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 5 2010
Peter Sogaard
Abstract During in vitro incubation in the absence or presence of insulin, glycogen depletion occurs in the inner core of the muscle specimen, concomitant with increased staining of hypoxia-induced-factor-1-alpha and caspase-3, markers of hypoxia and apoptosis, respectively. The aim of this study was to determine whether insulin is able to diffuse across the entire muscle specimen in sufficient amounts to activate signalling cascades to promote glucose uptake and glycogenesis within isolated mouse skeletal muscle. Phosphoprotein multiplex assay on lysates from muscle preparation was performed to detect phosphorylation of insulin-receptor on Tyr1146, Akt on Ser473 and glycogen-synthases-kinase-3 on Ser21/Ser9. To address the spatial resolution of insulin signalling, immunohistochemistry studies on cryosections were performed. Our results provide evidence to suggest that during the in vitro incubation, insulin sufficiently diffuses into the centre of tubular mouse muscles to promote phosphorylation of these signalling events. Interestingly, increased insulin signalling was observed in the core of the incubated muscle specimens, correlating with the location of oxidative fibres. In conclusion, insulin action was not restricted due to insufficient diffusion of the hormone during in vitro incubation in either extensor digitorum longus or soleus muscles from mouse under the specific experimental settings employed in this study. Hence, we suggest that the glycogen depleted core as earlier observed is not due to insufficient insulin action. J. Cell. Biochem. 109: 943,949, 2010. © 2010 Wiley-Liss, Inc. [source]


Anaplastic lymphoma kinase proteins in growth control and cancer

JOURNAL OF CELLULAR PHYSIOLOGY, Issue 3 2004
K. Pulford
The normal functions of full-length anaplastic lymphoma kinase (ALK) remain to be completely elucidated. Although considered to be important in neural development, recent studies in Drosophila also highlight a role for ALK in gut muscle differentiation. Indeed, the Drosophila model offers a future arena for the study of ALK, its ligands and signalling cascades. The discovery of activated fusion forms of the ALK tyrosine kinase in anaplastic large cell lymphoma (ALCL) has dramatically improved our understanding of the pathogenesis of these lymphomas and enhanced the pathological diagnosis of this subtype of non-Hodgkin's lymphoma (NHL). Likewise, the realisation that a high percentage of inflammatory myofibroblastic tumours express activated-ALK fusion proteins has clarified the causation of these mesenchymal neoplasms and provided for their easier discrimination from other mesenchymal-derived inflammatory myofibroblastic tumour (IMT) mimics. Recent reports of ALK expression in a range of carcinoma-derived cell lines together with its apparent role as a receptor for PTN and MK, both of which have been implicated in tumourigenesis, raise the possibility that ALK-mediated signalling could play a role in the development and/or progression of a number of common solid tumours. The therapeutic targeting of ALK may prove to have efficacy in the treatment of many of these neoplasms. © 2004 Wiley-Liss, Inc. [source]


MAPK-pathway activity, Lrrk2 G2019S, and Parkinson's disease

JOURNAL OF NEUROSCIENCE RESEARCH, Issue 6 2007
Linda R. White
Abstract The 6055G>A mutation in the leucine-rich repeat kinase 2 (LRRK2) gene results in a G2019S substitution in the mixed-lineage kinase domain of Lrrk2, causing autosomal dominant Parkinson's disease (PD). We hypothesized the mutation alters cellular mitogen-activated protein kinase (MAPK) signalling cascades, and might be detectable in tissues other than in the brain. We therefore compared total levels and activation of the signalling proteins Src, HSP27, p38 MAPK, JNK, and ERK, in extracts of leukocytes isolated from patients with PD carrying the G2019S mutation, healthy mutation carriers, patients with idiopathic PD, and healthy controls. Phosphorylation of Src, HSP27, and JNK was reduced significantly in cell extracts from patients with G2019S-associated PD compared to healthy controls. Similarly, phosphorylation was reduced significantly in Src and HSP27 in the group of healthy carriers of the mutation, as well as in patients with idiopathic PD. Significant reductions in total Src were also observed in these three groups compared to the controls. The results of this pilot project therefore indicate significant alterations in key signalling proteins in leukocytes from patients with PD, and were most pronounced in G2019S-associated PD. Changes in MAPK-signalling may thus be common to PD pathophysiology, regardless of aetiology. Such changes may also be shown in blood samples during the preclinical stage of LRRK2 -associated PD, which could be particularly important for the development of neuroprotective strategies to delay onset, or slow progression of PD. © 2007 Wiley-Liss, Inc. [source]


Lactobacilli antagonize biological effects of enterohaemorrhagic Escherichia coli in vitro

LETTERS IN APPLIED MICROBIOLOGY, Issue 6 2008
A.A. Hugo
Abstract Aims:, To assess the effect of two lactobacilli on the biological activity of enterohaemorrhagic Escherichia coli (EHEC) in vitro. Methods and Results:, Strains CIDCA 133 (Lactobacillus delbrueckii subsp. lactis) and CIDCA 83114 (Lactobacillus plantarum) were studied. Hep-2 cells were used as an in vitro model to assess the biological effect of a clinical isolate of EHEC. Preincubation of cell monolayers with lactobacilli before EHEC prevented detachment of eukaryotic cells and minimizes both F-actin rearrangements and morphological alterations. Interestingly, the protective effect could not be ascribed to pathogen exclusion. In addition, viability of the lactobacilli was not necessary for protection and other species of the genus Lactobacillus failed to protect eukaryotic cells. Conclusions:, Our results suggest that lactobacilli are antagonizing virulence mechanisms of EHEC either by modification of the microenvironment or by interfering with the signalling cascades triggered by the pathogen. Significance and Impact of the Study:, Our findings give a rationale basis for the use of specific probiotic strains for the prophylaxis and prevention of intestinal infections due to EHEC. [source]