Signaling Pathways (signaling + pathway)

Distribution by Scientific Domains
Distribution within Life Sciences

Kinds of Signaling Pathways

  • apoptotic signaling pathway
  • b signaling pathway
  • ca2+ signaling pathway
  • camp signaling pathway
  • canonical wnt signaling pathway
  • catenin signaling pathway
  • cell signaling pathway
  • cellular signaling pathway
  • critical signaling pathway
  • dependent signaling pathway
  • different signaling pathway
  • downstream signaling pathway
  • erk signaling pathway
  • estrogen signaling pathway
  • factor signaling pathway
  • growth factor signaling pathway
  • hedgehog signaling pathway
  • independent signaling pathway
  • insulin signaling pathway
  • intracellular signaling pathway
  • jnk signaling pathway
  • kinase signaling pathway
  • major signaling pathway
  • mapk signaling pathway
  • mitogen-activated protein kinase signaling pathway
  • molecular signaling pathway
  • multiple signaling pathway
  • notch signaling pathway
  • other signaling pathway
  • pi3k/akt signaling pathway
  • protein kinase signaling pathway
  • receptor signaling pathway
  • smad signaling pathway
  • specific signaling pathway
  • various signaling pathway
  • wingless signaling pathway
  • wnt signaling pathway

  • Terms modified by Signaling Pathways

  • signaling pathway downstream
  • signaling pathway important

  • Selected Abstracts


    Enhanced Activation of Cyclooxygenase-2 Downregulates Th1 Signaling Pathway in Helicobacter pylori -infected Human Gastric Mucosa

    HELICOBACTER, Issue 3 2007
    Antonia Pellicanò
    Abstract Background:, Evidence suggests that an impaired T-cell response against Helicobacter pylori plays a role in the pathogenesis of H. pylori -related diseases. Cyclooxygenase (COX) 2 has been shown to inhibit the production of T-helper (Th) 1 cytokines. This study aimed to ascertain whether COX-2 downregulates Th1 signaling pathway in human gastric mucosa colonized by H. pylori. Methods:, COX-2 expression and prostaglandin E2 (PGE2) production were determined in total proteins extracted from freshly obtained gastric biopsies of H. pylori -infected and uninfected patients by Western blotting and enzyme-linked immunosorbent assay (ELISA). Phosphorylated (p)STAT4, pSTAT1, T-bet, and pSTAT6 expression and interleukin (IL)-12, interferon (IFN)-,, and IL-4 production were also determined by Western blotting and ELISA, respectively, in total protein extracts from gastric biopsy cultures of H. pylori -infected patients treated without and with COX-2 inhibitor NS-398. Results:, Enhanced expression of COX-2 and production of PGE2 was found in H. pylori -infected compared to uninfected patients. COX-2 inhibition significantly increased expression of Th1 transcription factors along with production of IL-12 and IFN-,. By contrast, no changes in the expression of STAT6 and production of IL-4 were found. Conclusion:, This study provides a mechanism by which H. pylori may actually interfere with normal T-cell activation in human gastric mucosa, possibly enhancing its pathogenicity. The use of COX-2 selective inhibitors as immunomodulators in the course of H. pylori infection deserves investigations. [source]


    Dysregulation of the BMP-p38 MAPK Signaling Pathway in Cells From Patients With Fibrodysplasia Ossificans Progressiva (FOP),,

    JOURNAL OF BONE AND MINERAL RESEARCH, Issue 6 2006
    Jennifer L Fiori
    Abstract FOP is a disabling disorder in which skeletal muscle is progressively replaced with bone. Lymphocytes, our model system for examining BMP signaling, cannot signal through the canonical Smad pathway unless exogenous Smad1 is supplied, providing a unique cell type in which the BMP,p38 MAPK pathway can be examined. FOP lymphocytes exhibit defects in the BMP,p38 MAPK pathway, suggesting that altered BMP signaling underlies ectopic bone formation in this disease. Introduction: Fibrodysplasia ossificans progressiva (FOP) is a rare genetic disorder characterized by progressive heterotopic ossification of connective tissues. Whereas the primary genetic defect in this condition is unknown, BMP4 mRNA and protein and BMP receptor type IA (BMPRIA) protein are overexpressed in cultured lymphocytes from FOP patients, supporting that altered BMP signaling is involved in this disease. In this study, we examined downstream signaling targets to study the BMP,Smad and BMP,p38 mitogen-activated protein kinase (MAPK) pathways in FOP. Materials and Methods: Protein phosphorylation was assayed by immunoblots, and p38 MAPK activity was measured by kinase assays. To examine BMP target genes, the mRNA expression of ID1, ID3, and MSX2 was determined by quantitative real-time PCR. Statistical analysis was performed using Student's t -test or ANOVA. Results: FOP lymphocytes exhibited increased levels of p38 phosphorylation and p38 MAPK activity in response to BMP4 stimulation. Furthermore, in response to BMP4, FOP cells overexpressed the downstream signaling targets ID1 by 5-fold and ID3 by 3-fold compared with controls. ID1 and ID3 mRNA induction was specifically blocked with a p38 MAPK inhibitor, but not extracellular signal-related kinase (ERK) or c-Jun N-terminal kinase (JNK) inhibitors. MSX2, a known Smad pathway target gene, is not upregulated in control or FOP cells in response to BMP, suggesting that lymphocytes do not use this limb of the BMP pathway. However, introduction of Smad1 into lymphocytes made the cells competent to regulate MSX2 mRNA after BMP4 treatment. Conclusions: Lymphocytes are a cell system that signals primarily through the BMP,p38 MAPK pathway rather than the BMP,Smad pathway in response to BMP4. The p38 MAPK pathway is dysregulated in FOP lymphocytes, which may play a role in the pathogenesis of FOP. [source]


    Fluid Flow Induction of Cyclo-Oxygenase 2 Gene Expression in Osteoblasts Is Dependent on an Extracellular Signal-Regulated Kinase Signaling Pathway,,

    JOURNAL OF BONE AND MINERAL RESEARCH, Issue 2 2002
    Sunil Wadhwa
    Abstract Mechanical loading of bone may be transmitted to osteocytes and osteoblasts via shear stresses at cell surfaces generated by the flow of interstitial fluid. The stimulated production of prostaglandins, which mediates some effects of mechanical loading on bone, is dependent on inducible cyclo-oxygenase 2 (COX-2) in bone cells. We examined the fluid shear stress (FSS) induction of COX-2 gene expression in immortalized MC3T3-E1 osteoblastic cells stably transfected with ,371/+70 base pairs (bp) of the COX-2 5,-flanking DNA (Pluc371) and in primary osteoblasts (POBs) from calvaria of mice transgenic for Pluc371. Cells were plated on collagen-coated glass slides and subjected to steady laminar FSS in a parallel plate flow chamber. FSS, from 0.14 to10 dynes/cm2, induced COX-2 messenger RNA (mRNA) and protein. FSS (10 dynes/cm2) induced COX-2 mRNA within 30 minutes, with peak effects at 4 h in MC3T3-E1 cells and at ,8 h in POBs. An inhibitor of new protein synthesis puromycin blocked the peak induction of COX-2 mRNA by FSS. COX-2 promoter activity, measured as luciferase activity, correlated with COX-2 mRNA expression in both MC3T3-E1 and POB cells. FSS induced phosphorylation of extracellular signal-regulated kinase (ERK) in MC3T3-E1 cells, with peak effects at 5 minutes. Inhibiting ERK phosphorylation with the specific inhibitor PD98059 inhibited FSS induction of COX-2 mRNA by 55-70% and FSS stimulation of luciferase activity by ,80% in both MC3T3-E1 and POB cells. We conclude that FSS transcriptionally induces COX-2 gene expression in osteoblasts, that the maximum induction requires new protein synthesis, and that induction occurs largely via an ERK signaling pathway. [source]


    Ing4 induces Cell Growth Inhibition in Human Lung Adenocarcinoma A549 Cells by Means of Wnt-1/,-Catenin Signaling Pathway

    THE ANATOMICAL RECORD : ADVANCES IN INTEGRATIVE ANATOMY AND EVOLUTIONARY BIOLOGY, Issue 5 2008
    Xiaomei Li
    Abstract ING4, as a novel candidate tumor suppressor gene, has been implicated in several human malignances by tumor growth inhibition and apoptosis enhancement. The mechanism of ING4 remains largely unknown. The purpose of this study was to investigate the inhibitory tumor growth effects of ING4 on lung adenocarcinoma, and its mechanism, by ING4 cDNA transduction into A549 cells. Furthermore, the expression level of ING4 in lung adenocarcinoma tissues was examined. The expression of ING4 was markedly reduced in human lung adenocarcinoma tissues. Overexpression of ING4 can induce growth inhibition in A549 cells both in vitro and in vivo, and also induce up-regulation of p27, down-regulation of cyclinD1, SKP2, and Cox2, and inactivation of the Wnt-1/,-catenin pathway. Moreover, overexpression of ING4 can enhance the sensitivity of A549 cells to radiotherapy and chemotherapy. Thus, ING4 may play an inhibitory role on A549 cell proliferation and tumor growth in lung adenocarcinoma by up-regulation or down-regulation of cell proliferation-regulating proteins such as p27, cyclinD1, SKP2, and Cox2 by means of inactivation of Wnt-1/,-catenin signaling. Anat Rec, 291:593,600, 2008. © 2008 Wiley-Liss, Inc. [source]


    Putative Role of Carbon Monoxide Signaling Pathway in Penile Erectile Function

    THE JOURNAL OF SEXUAL MEDICINE, Issue 1 2009
    Mohamed T. Abdel Aziz MD
    ABSTRACT Introduction., Erectile response depends on nitric oxide (NO) generated by NO synthase (NOS) enzyme of the nerves and vascular endothelium in the cavernous tissue. NO activates soluble guanylate cyclase (sGC), leading to the production of cyclic guanosine monophosphate (cGMP). cGMP activates cGMP-dependent protein kinase that activates Ca2+/ATPase pump that activates Ca2+/K efflux pump extruding Ca2+ across the plasma membrane with consequent smooth muscle cell relaxation. A role similar to that of NOS/NO signaling has been postulated for carbon monoxide (CO) produced in mammals from heme catabolism by heme oxygenase (HO) enzyme. Aim., To assess CO signaling pathway for erectile function by reviewing published studies. Methods., A systematic review of published studies on this affair based on Pubmed and Medical Subject Heading databases, with search for all concerned articles. Main Outcome Measures., Documentation of positive as well as negative criteria of CO/HO signaling focused on penile tissue. Results., The concept that HO-derived CO could play a role in mediating erectile function acting in synergism with, or as a potentiator for, NOS/NO signaling pathway is gaining momentum. CO/HO signaling pathway has been shown to partially mediate the actions of oral phosphodiesterase type 5 inhibitors. In addition, it was shown that the use of CO releasing molecules potentiated cavernous cGMP levels. However, increased CO production or release was reported to be associated, in some studies, with vasoconstriction. Conclusion., This review sheds a light on the significance of cavernous tissue CO signaling pathway that may pave the way for creation of therapeutic modalities based on this pathway. Abdel Aziz MT, Mostafa T, Atta H, Wassef MA, Fouad HH, Rashed LA, and Sabry D. Putative role of carbon monoxide signaling pathway in penile erectile function. J Sex Med 2009;6:49,60. [source]


    Role of Increased Penile Expression of Transforming Growth Factor-,1 and Activation of the Smad Signaling Pathway in Erectile Dysfunction in Streptozotocin-Induced Diabetic Rats

    THE JOURNAL OF SEXUAL MEDICINE, Issue 10 2008
    Lu Wei Zhang MD
    ABSTRACT Introduction., It has been suggested that transforming growth factor-,1 (TGF-,1) plays an important role in the pathogenesis of diabetes-induced erectile dysfunction. Aim., To investigate the expression and activity of Smad transcriptional factors, the key molecules for the initiation of TGF-,-mediated fibrosis, in the penis of streptozotocin (STZ)-induced diabetic rats. Methods., Fifty-two 8-week-old Sprague,Dawley rats were used and divided into control and diabetic groups. Diabetes was induced by an intravenous injection of STZ. Main Outcome Measures., Eight weeks later, erectile function was measured by electrical stimulation of the cavernous nerve (N = 12 per group). The penis was harvested and stained with Masson trichrome or antibody to TGF-,1, phospho-Smad2 (P-Smad2), smooth muscle ,-actin, and factor VIII (N = 12 per group). Penis specimens from a separate group of animals were used for TGF-,1 enzyme-linked immunosorbent assay (ELISA), P-Smad2/Smad2, phospho-Smad3 (P-Smad3)/Smad3, fibronectin, collagen I, and collagen IV western blot, or hydroxyproline determination. Results., Erectile function was significantly reduced in diabetic rats compared with that in controls. The expression of TGF-,1, P-Smad2, and P-Smad3 protein evaluated by ELISA or western blot was higher in diabetic rats than in controls. Compared with that in control rats, P-Smad2 expression was higher mainly in smooth muscle cells and fibroblasts of diabetic rats, whereas no significant differences were noted in endothelial cells or in the dorsal nerve bundle. Cavernous smooth muscle and endothelial cell contents were lower in diabetic rats than in controls. Cavernous fibronectin, collagen IV, and hydroxyproline content was significantly higher in diabetic rats than in controls. Conclusion., Upregulation of TGF-,1 and activation of the Smad signaling pathway in the penis of diabetic rats might play important roles in diabetes-induced structural changes and deterioration of erectile function. Zhang LW, Piao S, Choi MJ, Shin H-Y, Jin H-R, Kim WJ, Song SU, Han J-Y, Park SH, Mamura M, Kim S-J, Ryu J-K, and Suh J-K. Role of increased penile expression of transforming growth factor-,1 and activation of the Smad signaling pathway in erectile dysfunction in streptozotocin-induced diabetic rats. J Sex Med 2008;5:2318,2329. [source]


    Secondary Apoptosis of Spiral Ganglion Cells Induced by Aminoglycoside: Fas,Fas Ligand Signaling Pathway,

    THE LARYNGOSCOPE, Issue 9 2008
    Woo Yong Bae MD
    Abstract Objectives/Hypothesis: Hair cell loss results in the secondary loss of spiral ganglion neurons (SGNs), over a period of several weeks. The death of the SGNs themselves results from apoptosis. Previous studies have shown that several molecules are involved in the apoptosis of SGNs that occurred secondary to hair cell loss. However, the precise mechanism of apoptosis of the SGNs remains unclear. The aim of this study was to ascertain the secondary apoptosis of spiral ganglion cells induced by aminoglycoside and to investigate the role of the Fas,FasL signaling pathway using guinea pigs as an experimental animal model. Study Design: Laboratory study using experimental animals. Methods: Guinea pigs weighing 250 to 300 g (n = 21) from 3 to 4 weeks of age were used. Gentamicin (60 ,L) was injected through a cochleostomy site on their left side. At 1 (n = 7), 2 (n = 7), and 3 (n = 7) weeks after gentamicin treatment, their cochleas were obtained from their temporal bone. Hematoxylin and eosin and terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick-end labeling staining were performed to observe apoptosis. To investigate the involvement of the Fas,FasL signaling pathway in the secondary apoptosis of SGNs, we performed reverse transcription-polymerase chain reaction (RT-PCR), western blotting, and immunohistochemistry. Results: A progressive loss of spiral ganglion cells with increasing time after gentamicin treatment was observed on light microscopic examination. Terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick-end labeling staining demonstrated induction of apoptotic cell death in SGNs after gentamicin treatment. Expression of FasL increased over time after gentamicin treatment as determined by RT-PCR and western blotting. On immunohistochemical staining, we observed the localization of FasL in the SGNs. The proapoptotic molecules Bax and Bad were increased, but levels of the antiapoptotic molecule Bcl-2 were decreased at increasing survival times after gentamicin treatment on RT-PCR. The gentamicin-treated group displayed initial activation of caspase-8 and increased the cleavage of caspase-3, caspase-8, and PARP protein in a time-dependent manner. Conclusions: The secondary apoptosis of SGNs could be a result of the apoptotic Fas,FasL signaling pathway. Blocking the Fas,FasL signaling pathway could be considered as a method for preventing secondary degeneration of SGNs, and further studies are needed to confirm this. [source]


    Epstein-Barr Virus (EBV) Latent Membrane Protein 1 Induces Interleukin-8 through the Nuclear Factor-,B Signaling Pathway in EBV-Infected Nasopharyngeal Carcinoma Cell Line

    THE LARYNGOSCOPE, Issue 5 2004
    Qingchun Ren MD
    Abstract Background/Objectives: Nasopharyngeal carcinoma (NPC) is a highly invasive and metastatic malignant tumor and is associated with Epstein-Barr virus (EBV) infection that exhibits type II latency. Angiogenesis is essential for tumor growth, invasion, and metastasis. Our previous studies have indicated that interleukin (IL)-8 was over-expressed in many NPC tissues and was found to be significantly correlated with angiogenesis by immunohistochemistry. Study Design: In vitro design. Methods: The influence of the EBV genome for IL-8 gene expression was studied using the EBV,genome-positive and -negative epithelial/NPC hybrid cell line NPC-KT. The EBV-positive and -negative clones were selected by polymerase chain reaction and in situ hybridization. Results: EBV-positive clones expressed abundant IL-8 mRNA compared with EBV-negative clones. This result indicated that over-expression of IL-8 depended on the presence of EBV genomes in NPC-KT cells. Two encoded genes, latent membrane protein (LMP)1 and EBV-encoded small RNAs (EBERs), expressed in NPC were transfected in EBV-negative NPC-KT cells. LMP1 transactivated the IL-8 promoter, whereas EBERs did not. Moreover, the nuclear factor (NF)- ,B binding site in the IL-8 promoter was essential for the response to LMP1, and the activator protein (AP)-1 binding site played only a partial role. Conclusions: LMP1 induces IL-8 mainly through the activation of NF-,B and partly through AP-1 in NPC model cell lines, NPC-KT, and this suggests that LMP1 plays an important role in the angiogenesis of NPC. [source]


    Target Gene Activation of the Wnt Signaling Pathway in Nuclear ,-Catenin Accumulating Cells of Adamantinomatous Craniopharyngiomas

    BRAIN PATHOLOGY, Issue 3 2009
    Annett Hölsken
    Abstract Activating ,-catenin (CTNNB1) mutations can be identified in the majority of adamantinomatous craniopharyngiomas (adaCP), suggesting an aberrant Wnt signaling pathway in this histopathologically peculiar tumor entity. However, there is no proven evidence that nuclear translocation of ,-catenin is associated with CTNNB1 mutations and target gene activation. We performed a laser-microdissection-based study comparing ,-catenin accumulating vs. non-accumulating tumor cells. Mutational analysis and gene expression profiling using real-time polymerase chain reaction were conducted in adamantinomatous and papillary tumor specimens. Target gene activation, that is, over-expression of Axin2 could be detected in adaCP, especially in tumor cells with nuclear ,-catenin accumulation. In addition, increased expression of BMP4 was identified in the accumulating cell population, which supports the hypothesis of an oral ectodermal origin. Interestingly, accumulating and non-accumulating tumor cell populations carried CTNNB1 mutations within exon 3. We extended the analysis, therefore, towards genetic regions encoding for membrane linkage and active/passive nuclear transport mechanisms (exon 4 and exon 8,13), but could not detect any alteration. This is the first report demonstrating an association between nuclear ,-catenin accumulation and target gene activation in adaCP. The results confirm the Wnt signaling pathway as molecular basis of the distinct and challenging clinical and morphological phenotype of adaCP. [source]


    VCP (p97) Regulates NFKB Signaling Pathway, Which Is Important for Metastasis of Osteosarcoma Cell Line

    CANCER SCIENCE, Issue 3 2002
    Tatsuya Asai
    In order to identify genes associated with metastasis, suppression subtractive hybridization (SSH) was performed using murine osteosarcoma cell line Dunn and its subline with higher metastatic potential, LM8. SSH revealed expression of the gene encoding valosin-containing protein (VCP; also known as p97) to be constitutively activated in LM8 cells, but it declined in Dunn cells when the cells became confluent. Because VCP is known to be involved in the ubiquitination process of Inhibitor-,B, (I,B,), an inhibitor of nuclear factor-,B (NF,B), whether VCP influences NF,B activation or not was examined by using VCP-transfected Dunn cells (Dunn/VCPs). When stimulated with tumor necrosis factor-, (TNF,), Dunn/VCPs showed constantly activated NF,B, although in the original Dunn cells and control vector transfectant (Dunn/Dunn-c) NF,B activation ceased when the cells became confluent. Western immunoblot analysis showed an increase of phosphorylated I,B, (p-IKB,) in the cytoplasm of confluent Dunn/Dunn-c cells compared to that of Dunn/VCPs. Therefore, decrease of p-IKB, degrading activity might be responsible for the decrease in NFKB activation. In vitro apoptosis assay demonstrated increased apoptosis rates of Dunn/Dunn-c cells after TNF, stimulation compared to those of Dunn/VCPs and LM8 cells. In vivo metastasis assay showed increased incidences of metastatic events in Dunn/VCP-1 inoculated male C3H mice compared to those in Dunn/Dunn-c inoculated mice. These findings suggested that VCP expression plays an important role in the metastatic process. Anti-apoptotic potential in these cells owing to constant NFKB activation via efficient cytoplasmic p-IKB, degrading activity may explain the increased metastatic potential of these cells. [source]


    A Small-Molecule Antagonist of the Hedgehog Signaling Pathway

    CHEMBIOCHEM, Issue 16 2007
    Jongkook Lee Dr.
    Shadow the Hedgehog. JK184 (illustrated in the scheme) was identified as an antagonist of Hedgehog signaling through a cell-based screen of chemical libraries. Results from biochemical and cellular experiments suggest that JK184 functions by inhibiting class IV alcohol dehydrogenase. This molecule should serve as a useful tool for studying Hedgehog signaling. [source]


    Small-Molecule Inhibitors of the Hedgehog Signaling Pathway as Cancer Therapeutics

    CHEMMEDCHEM, Issue 4 2010
    Stefan Peukert Dr.
    Abstract Inhibitors of the Hedgehog (Hh) molecular signaling pathway have emerged in recent years as a promising new class of potential therapeutics for cancer treatment. Numerous drug discovery efforts have resulted in the identification of a wide variety of small molecules that target different members of this pathway, including Smoothened (Smo), Sonic hedgehog protein (Shh), and Gli1. Several Smo inhibitors have now entered human clinical trials, and successful proof-of-concept studies have been carried out in patients with defined genetic mutations in the Hh pathway. This review provides a general overview of three main topics in this rapidly expanding area: 1),the various types of biological assays and in,vivo models that have been employed for the identification and optimization of Hh pathway inhibitors; 2),Smo inhibitors reported to date, including recent clinical results where available; and 3),efforts toward the identification and characterization of inhibitors of other members of the Hh pathway. [source]


    Orthogonal Chemical Genetic Approaches for Unraveling Signaling Pathways

    IUBMB LIFE, Issue 6 2005
    Kavita Shah
    Abstract While chemical genetic approach uses small molecules to probe protein functions in cells or organisms, orthogonal chemical genetics refers to strategies that utilize reengineered protein-small molecule interfaces, to alter specificities, in order to probe their functions. The advantage of orthogonal chemical genetics is that the changes at the interfaces are generally so minute that it goes undetected by natural processes, and thus depicts a true physiological picture of biological phenomenon. This review highlights the recent advances in the area of orthogonal chemical genetics, especially those designed to probe signaling processes. Dynamic protein-protein and enzyme-substrate interactions following stimuli form the foundation of signal transduction. These processes not only break spatial and temporal boundaries between interacting proteins, but also impart distinct regulatory properties by creating functional diversity at the interfaces. Functional and temporal modulation of these dynamic interactions by specific chemical probes provides extremely powerful tools to initiate, ablate, decouple and deconvolute different components of a signaling pathway at multiple stages. Not surprisingly, multiple receptor-ligand reengineering approaches have been developed in the last decade to selectively manipulate these transient interactions with the aim of unraveling signaling events. However, given the diversity of protein-protein interactions and novel chemical genetic probes developed to perturb these processes, a short review cannot do adequate justice to all aspects of signaling. For this reason, this review focuses on some orthogonal chemical-genetic strategies that are developed to study signaling processes involving enzyme-substrate interactions. IUBMB Life, 57: 397-405, 2005 [source]


    Carboxypeptidase Z (CPZ) Links Thyroid Hormone and Wnt Signaling Pathways in Growth Plate Chondrocytes,

    JOURNAL OF BONE AND MINERAL RESEARCH, Issue 2 2009
    Lai Wang
    Abstract Carboxypeptidase Z (CPZ) removes carboxyl-terminal basic amino acid residues, particularly arginine residues, from proteins. CPZ contains a cysteine-rich domain (CRD) similar to the CRD found in the frizzled family of Wnt receptors. We have previously shown that thyroid hormone regulates terminal differentiation of growth plate chondrocytes through activation of Wnt-4 expression and Wnt/,-catenin signaling. The Wnt-4 protein contains a C-terminal arginine residue and binds to CPZ through the CRD. The objective of this study was to determine whether CPZ modulates Wnt/,-catenin signaling and terminal differentiation of growth plate chondrocytes. Our results show that CPZ and Wnt-4 mRNA are co-expressed throughout growth plate cartilage. In primary pellet cultures of rat growth plate chondrocytes, thyroid hormone increases both Wnt-4 and CPZ expression, as well as CPZ enzymatic activity. Knockdown of either Wnt-4 or CPZ mRNA levels using an RNA interference technique or blocking CPZ enzymatic activity with the carboxypeptidase inhibitor GEMSA reduces the thyroid hormone effect on both alkaline phosphatase activity and Col10a1 mRNA expression. Adenoviral overexpression of CPZ activates Wnt/,-catenin signaling and promotes the terminal differentiation of growth plate cells. Overexpression of CPZ in growth plate chondrocytes also removes the C-terminal arginine residue from a synthetic peptide consisting of the carboxyl-terminal 16 amino acids of the Wnt-4 protein. Removal of the C-terminal arginine residue of Wnt-4 by site-directed mutagenesis enhances the positive effect of Wnt-4 on terminal differentiation. These data indicate that thyroid hormone may regulate terminal differentiation of growth plate chondrocytes in part by modulating Wnt signaling pathways through the induction of CPZ and subsequent CPZ-enhanced activation of Wnt-4. [source]


    Gene Expression Profiling in Paget's Disease of Bone: Upregulation of Interferon Signaling Pathways in Pagetic Monocytes and Lymphocytes,,§

    JOURNAL OF BONE AND MINERAL RESEARCH, Issue 2 2008
    Zsolt B Nagy
    Abstract We examined the gene expression profile of genes involved in bone metabolism in 23 patients with PD compared with 23 healthy controls. We found a significant overexpression of the genes of the IFN pathway along with a downregulation of tnf-,. Our result suggest that IFN-mediated signaling may play important roles in aberrant osteoclastogenesis of PD. Introduction: Paget's disease of bone (PD) is characterized by focal regions of highly exaggerated bone remodeling and aberrant osteoclastogenesis. Under physiological conditions, circulating monocytes may serve as early progenitors of osteoclasts and along with peripheral blood lymphocytes produce a wide variety of factors important in bone metabolism. Nevertheless, little is known about the roles of circulating monocytes and lymphocytes in relation to the pathological bone turnover in PD. Materials and Methods: In this study, we aimed at investigating the gene expression pattern of PD using quantitative real-time PCR in monocytes and lymphocytes isolated from peripheral blood mononuclear cells (PBMCs). Fifteen genes known to be involved in osteoclastogenesis were studied in cells from 23 patients with PD and in cells from 23 healthy controls. Eight human genes including ifn-, (3.48-fold, p < 0.001), ifn-, (2.68-fold, p < 0.001), ifn-, (1.98-fold, p = 0.002), p38 ,2 mapk (2.47-fold, p = 0.002), ifn-,r1 (2.03-fold, p = 0.01), ifn-,r2 (1.81-fold, p = 0.02), stat1 (1.57-fold, p = 0.037), and tnf-, (,2.34, p < 0.001) were found to be significantly altered in pagetic monocytes compared with monocytes of healthy controls. Results: In pagetic lymphocytes, significant changes in the expression of ifn-, (2.17-fold, p < 0.001), ifn-, (2.13-fold, p = 0.005), ifn-, (1.89-fold, p < 0.001), ifn-,r1 (1.02-fold, p = 0.04), ifn-,r2 (1.01-fold, p = 0.031), stat2 (1.79-fold, p < 0.001), and tnf-, (,1.49, p < 0.001) were found compared with lymphocytes of healthy controls. Furthermore, IFN-, protein was significantly elevated in the sera of PD patients (18.7 ± 6.69 pg/ml) compared with healthy controls (3.87 ± 6.48 pg/ml, p = 0.042). Conclusions: In conclusion, our data suggest that novel pathways mainly related to the IFN-mediated signaling may play important roles in the aberrant osteoclastogenesis of PD. [source]


    Beer-Induced Pancreatic Enzyme Secretion: Characterization of Some Signaling Pathways and of the Responsible Nonalcoholic Compounds

    ALCOHOLISM, Issue 9 2009
    Andreas Gerloff
    Background:, Various alcoholic beverages have different effects on pancreatic enzyme secretion in vivo and in vitro. Recently we demonstrated that beer dose-dependently induces amylase release of rat pancreatic acinar cells, whereas pure ethanol and other alcoholic beverages have no effect. The aims of this study were to: (1) investigate the involved signaling pathways in the beer-induced enzyme secretion of rat pancreatic acinar cells and (2) characterize the responsible nonalcoholic compounds from beer. Methods:, Rat pancreatic AR4-2J cells were differentiated by dexamethasone treatment for 72 hours. After incubation of cells with 1 to 10% (v/v) beer (containing 4.7% v/v ethanol) in the absence or presence of the maximal effective concentration of cholecystokinin (CCK) (100 nM) for 60 minutes, protein secretion was measured using amylase activity assay. To study the involved signaling pathways, cells were pretreated with selective inhibitors or the fluorescent dye Fura2/AM for 15 and 30 minutes, respectively. To characterize the responsible compounds, beer was distilled, lyophilized, dialyzed, or treated with proteases prior stimulation of the cells. Extract of barley was prepared by boiling the crop and subsequent filtration. Results:, Stimulation with 5% and 10% beer (v/v) significantly (p < 0.001) increased maximally CCK-induced amylase by 55 ± 25% and 56 ± 37%, respectively. By using selective antagonists, we found that inhibition of phospholipase C (PLC) and inositol 1,4,5-trisphosphate-receptor binding reduced beer-induced amylase release, whereas inhibition of protein kinase C, adenylate cyclase, and protein kinase A had no significant effect. Using the fluorescent Ca2+ indicator Fura-2/AM revealed that beer induces an increase of cytosolic free Ca2+ concentration. Stimulation of AR4-2J cells with preproducts of beer and fermented glucose indicated that the stimulatory substances from beer derived from barley and are not produced during alcoholic fermentation. Furthermore, the stimulants from beer are thermostable, nonvolatile substances with a molecular weight higher than 15 kDa. Conclusions:, Beer-induced enzyme secretion of AR4-2J cells is, at least in part, mediated by the activation of PLC and subsequent Ca2+ release from internal stores. However, the additive effect of beer on CCK-induced amylase release suggests that additional signaling pathways are involved. The yet unknown stimulants of pancreatic enzyme secretion originate from barley and their stimulatory potential is maintained during the process of malting and brewing. [source]


    Book review: Dietary Modulation of Cell Signaling Pathways

    AMERICAN JOURNAL OF HUMAN BIOLOGY, Issue 6 2009
    Yongping BaoArticle first published online: 28 AUG 200
    No abstract is available for this article. [source]


    Effects of Fibronectin, VEGF and Angiostatin on the Expression of MMPs through Different Signaling Pathways in the JEG-3 Cells

    AMERICAN JOURNAL OF REPRODUCTIVE IMMUNOLOGY, Issue 4 2003
    Jian Zhang
    Problem: The objective of this study was to evaluate the possible signal pathway of fibronectin (FN), vascular endothelial growth factor (VEGF) and angiostatin (AS) on the expression of matrix metalloproteinases (MMPs) in JEG-3 cells. Methods of study: JEG-3 cells were cultured and were examined for the effect of FN, VEGF and AS on the expression of MMPs by immunocytochemistry, gelatin zymography, Western blot analysis and reverse transcription-polymerase chain reaction (RT-PCR). Results: We found that up-regulation of the expression of MMPs was induced by FN and VEGF through the focal adhesion kinase (FAK)/mitogen-activated protein kinase (MAPK) and Flt-1/p38SAPK/MAPKAPK2 signaling pathways, respectively. Furthermore, AS down-regulated the expression of MMPs through the integrin ,V,3/FAK signaling pathway independent of the integrin-binding motif Arg-Gly-Asp (RGD). Conclusion: These data indicate that the expression of MMPs is regulated by many independent factors (such as FN, VEGF and AS) through different signaling pathways which influence the behavior of trophoblast cells. [source]


    A Spectrum of Models of Signaling Pathways

    CHEMBIOCHEM, Issue 10 2004
    Sharat J. Vayttaden
    How ready is biology for systems biology? This review surveys some 250 models and supporting experiments to assess how well major signaling pathways have been quantified. The review traces the family tree of MAPK models to show how modeling can evolve and has influenced the field. [source]


    Signaling pathways regulating the expression of Prx1 and Prx2 in the chick mandibular mesenchyme

    DEVELOPMENTAL DYNAMICS, Issue 11 2008
    Aikaterini-El Doufexi
    Abstract Prx1 and Prx2 are members of the aristaless-related homeobox genes shown to play redundant but essential roles in morphogenesis of the mandibular processes. To gain insight into the signaling pathways that regulate expression of Prx genes in the mandibular mesenchyme, we used the chick as a model system. We examined the patterns of gene expression in the face and the roles of signals derived from the epithelium on the expression of Prx genes in the mandibular mesenchyme. Our results demonstrated stage-dependent roles of mandibular epithelium on the expression of Prx in the mandibular mesenchyme and provide evidence for positive roles of members of the fibroblast and hedgehog families derived from mandibular epithelium on the expression of Prx genes in the mandibular mesenchyme. Our studies suggest that endothelin-1 signaling derived from the mesenchyme is involved in restricting the expression of Prx2 to the medial mandibular mesenchyme. Developmental Dynamics 237:3115,3127, 2008. © 2008 Wiley-Liss, Inc. [source]


    MAP kinase activation in avian cardiovascular development

    DEVELOPMENTAL DYNAMICS, Issue 4 2004
    Christine M. Liberatore
    Abstract Signaling pathways mediated by receptor tyrosine kinases (RTK) and mitogen-activated protein kinase (MAPK) activation have multiple functions in the developing cardiovascular system. The localization of diphosphorylated extracellular signal regulated kinase (dp-ERK) was monitored as an indicator of MAPK activation in the forming heart and vasculature of avian embryos. Sustained dp-ERK expression was observed in vascular endothelial cells of embryonic and extraembryonic origins. Although dp-ERK was not detected during early cardiac lineage induction, MAPK activation was observed in the epicardial, endocardial, and myocardial compartments during heart chamber formation. Endocardial expression of dp-ERK in the valve primordia and heart chambers may reflect differential cell growth associated with RTK signaling in the heart. dp-ERK localization in the epicardium, subepicardial fibroblasts, myocardial fibroblasts, and coronary vessels is consistent with MAPK activation in epicardial-derived cell lineages. The complex temporal,spatial regulation of dp-ERK in the heart supports diverse regulatory functions for RTK signaling in different cell populations, including the endocardium, myocardium, and epicardial-derived cells during cardiac organogenesis. Developmental Dynamics 230:773,780, 2004. © 2004 Wiley-Liss, Inc. [source]


    Cell-type specific utilization of multiple negative feedback loops generates developmental constancy

    GENES TO CELLS, Issue 7 2005
    Masaki Iwanami
    Signaling pathways generally contain multiple negative regulators that are induced by the signal they repress, constructing negative feedback loops. Although such negative regulators are often expressed in a tissue- or cell-type specific manner during development, little is known about the significance of their differential expression patterns and possible interactions. We show the role and interplay of two cell-type specific negative feedback loops during specification of photoreceptor neurons in the Drosophila compound eye, a process that occurs via epidermal growth factor (EGF)-mediated sequential induction through the activation of the Ras/MAPK signaling pathway. Inducing cells secreting EGF express a negative regulator Sprouty (SPRY) that lowers Ras/MAPK signaling activity, and as a consequence reduces the signal-dependent expression of a secreted EGF inhibitor, Argos (AOS). Induced cells in turn express an orphan nuclear receptor Seven-up (SVP), which represses SPRY expression thereby allowing expression and secretion of AOS, preventing further induction. When this intricate system fails, as in spry mutants, sequential induction is no longer constant and the number of photoreceptor neurons becomes variable. Thus, cell-type specific utilization of multiple negative feedback loops not only confers developmental robustness through functional redundancy, but is a key component in generating consistent patterning. [source]


    Signaling pathways in Th2 development

    IMMUNOLOGICAL REVIEWS, Issue 1 2004
    Kerri A. Mowen
    Summary:, In order for an immune response to be successful, it must be of the appropriate type and magnitude. Intracellular residing pathogens require a cell-mediated immune response, whereas extracellular pathogens evoke a humoral immune response. T-helper (Th) cells orchestrate the immune response and are divided into two subsets, Th1 and Th2 cells. Here, we discuss the mechanisms of Th2 development with a focus on signal transduction pathways that influence Th2 differentiation. [source]


    Reduced alpha adrenergic mediated contraction of renal preglomerular blood vessels as a function of gender and aging

    JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 4 2005
    John C. Passmore
    Abstract As human males age, a decline in baroreflex-mediated elevation of blood pressure occurs due, at least in part, to a reduction in alpha-1 adrenergic vasoconstrictor function. Alpha adrenergic constriction is mediated by guanosine triphosphate binding Protein (G Protein) coupled signaling pathways. Alpha-1 A/C, B, and D adrenergic receptor expressions, measured by GeneChip array, are not reduced during aging in renal blood vessels of male or female rats. Alpha-1 A GeneChip expression is greater, at all ages studied, in females than in males. Prazosin binding by alpha-1 adrenergic receptors is greater in young adult female rats than in young adult male rats; however, it is reduced with aging in both male and female rats. G alpha q GeneChip expression declines while expression of adrenergic receptor kinase (GRK2) and tyrosine phosphatases (TyrP) increase with aging in male rats. The declines in alpha-1 adrenergic receptor binding and G alpha q expression and also the increases in GRK2 and TyrP expression likely relate to the age-related decline of vasoconstriction in male rats. The information that the expression of alpha-1 A adrenergic receptors is greater in female rats and (GRK2) expression does not increase during aging could relate to the gender differences in vasoconstrictor function with aging. Gene therapy to ameliorate the age-related decline in renal function could possibly reduce the need for renal dialysis. Signaling pathways such as those reviewed herein may provide an outline of the molecular pathways needed to move toward successful renal gene therapy for aging individuals. J. Cell. Biochem. © 2005 Wiley-Liss, Inc. [source]


    Signaling pathways of bisphenol A,induced apoptosis in hippocampal neuronal cells: Role of calcium-induced reactive oxygen species, mitogen-activated protein kinases, and nuclear factor,,B

    JOURNAL OF NEUROSCIENCE RESEARCH, Issue 13 2008
    Soyoung Lee
    Abstract In the present study, we investigated the neurotoxicity of bisphenol A [BPA; 2,2-bis-(4 hydroxyphenyl) propane] and the underlying mechanisms of action in mouse hippocampal HT-22 cells. BPA, known to be a xenoestrogen, is used in the production of water bottles, cans, and teeth suture materials. BPA-treated HT-22 cells showed lower cell viability than did controls at concentrations of BPA over 100 ,M. BPA induced apoptotic cell death as indicated by staining with Hoechst 33258, costaining with Annexin V/propidium iodide, and activation of caspase 3. BPA regulated the generation of reactive oxygen species (ROS) by increasing intracellular calcium. BPA activated phosphorylation of extracellular signal,regulated kinase (ERK) and c-Jun N-terminal kinase (JNK), and nuclear translocation of nuclear factor (NF)-,B. Pretreatment with specific inhibitors for calcium, ROS, ERK, and JNK decreased BPA-induced cell death; however, inhibitor for NF-,B increased BPA-induced cell death. The results suggest that calcium, ROS, ERK, and JNK are involved in BPA-induced apoptotic cell death in HT-22 cells. In contrast, an NF-,B cascade was activated for survival signaling after BPA treatment. © 2008 Wiley-Liss, Inc. [source]


    Signaling pathways in osteoblast proinflammatory responses to infection by Porphyromonas gingivalis

    MOLECULAR ORAL MICROBIOLOGY, Issue 2 2008
    T. Ohno
    Introduction:, We recently investigated global gene expression in ST2 mouse stromal cells infected by the periodontal pathogen Porphyromonas gingivalis using microarray technology, and found that the bacterium induces a wide range of proinflammatory gene expression. Here, we reported the signaling pathways involved in those proinflammatory responses. Methods:, ST2 cells and primary calvarial osteoblasts from C3H/HeN, C57BL/6, and MyD88-deficient (MyD88,/,) mice were infected with P. gingivalis ATCC33277 and its gingipain-deficient mutant KDP136. Expression of the chemokines CCL5 and CXCL10, and matrix metalloproteinase-9 (MMP9) were quantified by real-time polymerase chain reaction, while phosphorylation of protein kinases and degradation of an inhibitor of nuclear factor-,B, I,B-,, were detected by Western blotting, and activation of transcriptional factors was determined by a luciferase reporter assay. The effects of inhibitors of transcriptional factors and protein kinases were also investigated. Results:, Infection by P. gingivalis elicited gene expression of CCL5, CXCL10, and MMP9 in both ST2 cells and osteoblasts. Western blot and reporter assay results revealed activation of nuclear factor-,B (NF-,B) and activator protein-1 transcription factors. The NF-,B inhibitor suppressed the expression of CCL5 and MMP9, but not that of CXCL10, whereas P. gingivalis infection induced significant CCL5 expression in MyD88,/, osteoblasts. In addition, activation of protease-activated receptors by trypsin elicited significant induction of CXCL10. Conclusion:, Our results suggest that various proinflammatory responses in P. gingivalis -infected stromal/osteoblast cells are NF-,B-dependent, but not always dependent on the Toll-like receptor/MyD88 pathway, while some responses are related to the activation of protease-activated receptors. Thus, P. gingivalis does not fully utilize well-established pathogen recognition molecules such as Toll-like receptors. [source]


    Differential mechanism of NF-,B inhibition by two glucocorticoid receptor modulators in rheumatoid arthritis synovial fibroblasts

    ARTHRITIS & RHEUMATISM, Issue 11 2009
    Valerie Gossye
    Objective To investigate and compare the molecular mechanisms by which 2 glucocorticoid receptor (GR),activating compounds, dexamethasone (DEX) and Compound A (CpdA), interfere with the NF-,B activation pathway in rheumatoid arthritis (RA) synovial cells. Methods Quantitative polymerase chain reaction was performed to detect the tumor necrosis factor , (TNF,),induced cytokine gene expression of interleukin-1, (IL-1,) and to investigate the effects of DEX and CpdA in RA fibroblast-like synoviocytes (FLS) transfected with small interfering RNA (siRNA) against GR (siGR) compared with nontransfected cells. Immunofluorescence analysis was used to detect the subcellular distribution of NF-,B (p65) under the various treatment conditions, and active DNA-bound p65 was measured using a TransAM assay and by chromatin immunoprecipitation analysis of IL-1,. Signaling pathways were studied via Western blotting of siGR-transfected cells, compared with nontransfected and nontargeting siRNA,transfected control cells, to detect the regulation of phospho-IKK, I,B,, phospho-p38, phospho-ERK, and phospho-JNK. Results Both DEX and CpdA efficiently inhibited IL-1, gene expression in a GR-dependent manner. In addition, CpdA attenuated the TNF,-induced nuclear translocation and DNA binding of p65 in RA FLS, via the attenuation of IKK phosphorylation and subsequent I,B, degradation. CpdA also displayed profound effects on TNF,-induced MAPK activation. The effects of CpdA on TNF,-induced kinase activities occurred independently of the presence of GR. In sharp contrast, DEX did not affect TNF,-induced IKK phosphorylation, I,B, degradation, p65 nuclear translocation, or MAPK activation in RA FLS. Conclusion DEX and CpdA display a dissimilar molecular mechanism of interaction with the NF-,B activation pathway ex vivo. A dual pathway, partially dependent and partially independent of GR (nongenomic), may explain the gene-inhibitory effects of CpdA in RA FLS. [source]


    Signaling pathways in innate immunity

    ACTA OPHTHALMOLOGICA, Issue 2008
    A SALMINEN
    Inflammation has a key role in the pathogenesis of AMD. This lecture will review the recent progress in understanding the different host-defence mechanisms against pathogens and self-based danger signals involved in the activation of innate immunity. The innate defence system utilizes pattern recognition receptors (PRR) to respond to a variety of pathogen-associated (PAMP) and danger-associated (DAMP) molecular structures. Along with the well-known complement and scavenger receptor systems, Toll-like receptors (TLR) and NOD-like receptors (NLR) have also a crucial part in host-defence and these receptor systems can be activated both by PAMPs and DAMPs. Pattern recognition receptors are located either in cell surface, such as TLR2 and TLR4, or in intracellular locations, e.g. TLR3, TLR9 and all NLRs. PRRs show some specificity to ligands and also in downstream they activate different signaling pathways, most common of which are NF-kB and IRF-dependent pathways inducing inflammatory responses. Retinal pigment epithelial cells (RPE) have an important role in eye host-defence, both at apical and basolateral surfaces. Most of the TLRs are expressed in RPE cells, especially TLR3 and TLR4, and they can participate in photoreceptor outer segment recognition. TLR3 can also suppress angiogenesis. The functions of NLRs, e.g. those forming inflammasomes, are still unknown, although the danger-type of activation signals, such as oxidative stress and potassium efflux, are present in retinal pigment epithelium. It seems that the activation of innate immunity system via DAMPs and PRRs may have a central role in the pathogenesis of AMD. [source]


    Shaggy/GSK-3, kinase localizes to the centrosome and to specialized cytoskeletal structures in Drosophila

    CYTOSKELETON, Issue 6 2006
    Yves Bobinnec
    Abstract The assembly of a functional bipolar mitotic spindle requires an exquisite regulation of microtubule behavior in time and space. To characterize new elements of this machinery we carried out a GFP based "protein trap" screen and selected fusion proteins which localized to the spindle apparatus. By this method we identified Shaggy, the Drosophila homologue of glycogen synthase kinase-3, (GSK-3,), as a component of centrosomes. GSK-3, acting in the Wingless signaling pathway is involved in a vast range of developmental processes, from pattern formation to cell-fate specification, and is a key factor for cell proliferation in most animals. We exploited our Shaggy::GFP Drosophila line to analyze the subcellular localizations of GSK-3,/Shaggy and shed light on its multiple roles during embryogenesis. We found that Shaggy becomes enriched transiently in a variety of specialized cytoskeletal structures of the embryo, including centrosomes throughout mitosis, suggesting that this kinase is involved in the regulation of many aspects of the cytoskeleton function. Cell Motil. Cytoskeleton 2006. © 2006 Wiley-Liss, Inc. [source]


    SunB, a novel Sad1 and UNC-84 domain-containing protein required for development of Dictyostelium discoideum

    DEVELOPMENT GROWTH & DIFFERENTIATION, Issue 7 2010
    Nao Shimada
    A gene, sunB, encoding a novel class of Sad1 and UNC-84 (SUN) domain, was isolated from a cDNA screen for suppressors of a mutation in Dd-STATa , a Dictyostelium homologue of metazoan STAT (signal transducers and activators of transcription). The SunB protein localized in the area around the nucleus in growing cells, but in the multicellular stages it was predominantly found in prespore vacuoles (PSVs). A disruptant of sunB was multinucleated in the vegetative phase; during development it formed mounds with multiple tips and failed to culminate. The mutation was cell autonomous, and showed reduced expression of the prespore marker gene pspA and elevated expression of marker genes for prestalk AB cells. Interestingly, the level of SunB was abnormally high in the prestalk cells of Dd-STATa mutants, which are defective in culmination. We conclude that SunB is essential for accurate prestalk/prespore differentiation during Dictyostelium development and that its cell-type dependent localization is regulated by a Dd-STATa-mediated signaling pathway. [source]