Signaling Mediators (signaling + mediator)

Distribution by Scientific Domains


Selected Abstracts


Inhibition of SMAD2 expression prevents murine palatal fusion

DEVELOPMENTAL DYNAMICS, Issue 7 2006
Nobuyuki Shiomi
Abstract Transforming growth factor (TGF)-beta 3 is known to regulate the disappearance of murine medial edge epithelium (MEE) during palatal fusion. Our previous studies showed that SMAD2, a TGF-beta signaling mediator, was expressed and phosphorylated primarily in the MEE and that SMAD2 phosphorylation in the MEE was temporospatially regulated by TGF-beta 3. The goal of this study was to examine the requirement for SMAD2 to complete the developmental events necessary for palatal fusion. SMAD2 expression was inhibited with Smad2 siRNA transfection into palatal tissues in vitro. The results showed that Smad2 siRNA transfection resulted in the maintenance of MEE cells in the palatal midline. Western blot and immunofluorescence analyses confirmed that the endogenous SMAD2 and phospho-SMAD2 levels were reduced following siRNA transfection. The SMAD3 level was not altered by the Smad2 siRNA transfection. The persistence of the MEE and the decreased SMAD2/phospho-SMAD2 levels were coincident with increased MEE cell proliferation. Addition of exogenous TGF-beta 3 increased p-SMAD2 level but not the total SMAD2 level. Therefore, exogenous TGF-beta 3 was not able to induce p-SMAD2 enough to rescue the palatal phenotype in the Smad2 siRNA group. The results indicated that the endogenous SMAD2 level is crucial in the regulation of disappearance of MEE during palatal fusion. Developmental Dynamics 235:1785,1793, 2006. © 2006 Wiley-Liss, Inc. [source]


Requirement of phospholipase C-,2 (PLC,2) for Dectin-1-induced antigen presentation and induction of TH1/TH17 polarization

EUROPEAN JOURNAL OF IMMUNOLOGY, Issue 5 2009
Ilaria Tassi
Abstract DC recognize microbial components through an array of receptors known as PRR. PRR initiate intracellular signals, which engender DC with the capacity to stimulate T-cell responses. Dectin-1 is a PRR that recognizes ,-glucan, a major constituent of many fungi's outer cell wall. Here we show that Dectin-1 activates DC through phospholipase (PLC),2 signaling. PLC,2-deficient DC were unable to expand antigen-specific T cells and induce TH1 and TH17 differentiation in response to ,-glucan. Mechanistically, PLC,2-deficiency impaired the capacity of DC to secrete polarizing cytokines following exposure to ,-glucan. Dectin-1 required PLC,2 to activate MAPK, AP-1 and NF-,B, which induce cytokine gene expression. Moreover, PLC,2 controlled Dectin-1-mediated NFAT activation and induction of NFAT-dependent genes such as IL-2, cyclooxigenase-2 and Egr transcription factors. We conclude that PLC,2 is a crucial signaling mediator that modifies DC gene expression program to activate DC responses to ,-glucan-containing pathogens. [source]


TRAF interactions with raft-like buoyant complexes, better than TRAF rates of degradation, differentiate signaling by CD40 and EBV latent membrane protein 1

INTERNATIONAL JOURNAL OF CANCER, Issue 2 2005
Hector Ardila-Osorio
Abstract The CD40 receptor and the Epstein-Barr virus oncoprotein LMP1 are both members of the TNF-receptor family and share several signaling mediators, including TRAF2 and TRAF3. Depending on the cell lineage and stage of maturation, LMP1 and CD40 can have synergistic, antagonist or unrelated effects. Previous publications have suggested that both TRAF2 and TRAF3 move into lipid rafts upon LMP1 expression or CD40 activation, whereas their proteolysis is only enhanced by CD40. However CD40-induced proteolysis of TRAF2 has only been reported in murine cells, and there are conflicting data regarding translocation of TRAF2 into lipid rafts. We therefore investigated TRAF2 and TRAF3 modifications induced by CD40 and LMP1 signaling in a panel of human cell lines of lymphoid and epithelial origins. Upon CD40 stimulation, a marked redistribution of TRAF2 into the buoyant raft fraction was observed in all cell lines and was often associated with a similar redistribution of TRAF3. In contrast, only TRAF3 was redistributed into the raft fraction upon LMP1 expression. Moreover parallel changes in subcellular distribution of TRAF2 and TRAF3 were recorded by electron microscopy. A significant decrease in TRAF2 and TRAF3 concentrations triggered by CD40 ligation was observed in only 1 cell line and there was no evidence that this decrease was required for the negative feed-back on JNK activation. TRAF2 redistribution into raft-like complexes thus appears as the most significant event distinctive of CD40 and LMP1 signaling. On the other hand, the parallel influence of CD40 and LMP1 on TRAF3 redistribution is consistent with functional similarities between the CD40-TRAF3 and LMP1-TRAF3 axes. [source]


Involvement of calcium in the differential induction of heat shock protein 70 by heat shock protein 90 inhibitors, geldanamycin and radicicol, in human non-small cell lung cancer H460 cells

JOURNAL OF CELLULAR BIOCHEMISTRY, Issue 1 2006
Yuo-Sheng Chang
Abstract Both geldanamycin (GA) and radicicol (RA) are HSP90 binding agents that possess antitumour activities. Although the in vitro data indicated that the inhibitory constant of RA is much bigger than that of GA, the in vivo data on drug efficacy might reveal different results. We have recently shown that treatment with GA induces a heat-shock response and that calcium mobilization may be involved in the process. By using induction of HSP70 as the endpoint assay, we found changes in upstream signaling mediators, including HSF1 and calcium mobilization, as well as possible involvement of protein kinase in human non-small cell lung cancer H460 cells treated with GA and RA. Our results demonstrated that calcium mobilization, a calcium dependent and H7-sensitive protein kinase, along with HSF1 activation by phosphorylation, are all involved in the HSP70 induction process triggered by the drugs. However, only GA, but not RA, can provoke a rapid calcium mobilization and thereby result in an instant induction of HSP70. Furthermore, the rapid calcium influx, followed by instant HSP induction, could be achieved in GA- or RA-treated cells placed in a medium containing excessive calcium while the response was completely abolished in cells depleted of calcium. Taken together, our findings suggest that differential calcium signaling may account for the differential induction of HSP and the action of GA and RA. J. Cell. Biochem. © 2005 Wiley-Liss, Inc. [source]


Differential Effects of Ethanol on Insulin-Like Growth Factor-I Receptor Signaling

ALCOHOLISM, Issue 2 2000
Andrea E.M. Seiler
Background: Activation of the insulin-like growth factor I receptor (IGF-IR) by its ligands IGF-I and IGF-II induces cell proliferation and protects against apoptosis. Ethanol inhibits IGF-IR tyrosine autophosphorylation, which subsequently interferes with the activation of key downstream signaling mediators including insulin-receptor substrate-1, phosphatidylinositol 3-kinase, and mitogen-activated protein (MAP) kinase. The ethanol-induced inhibition of IGF-IR signaling reduces mitogenesis and enhances apoptosis. In the current study, we demonstrate that the antiproliferative action of ethanol can be modulated by differential sensitivity of the autophosphorylation of the IGF-IR to ethanol. Methods: A series of subclones was generated from 3T3 cells that express the human IGF-IR. Results: There was considerable variability in the ability of ethanol to inhibit IGF-I-dependent IGF-IR tyrosine autophosphorylation and MAP kinase activation, despite equivalent IGF-IR expression. The IGF-IR was completely resistant to a high concentration of ethanol (150 mM) in several subclones. The sensitivity of IGF-IR autophosphorylation to ethanol correlated directly with the inhibition of IGF-I-mediated MAP kinase activation and cell proliferation. Resistant subclones exhibited features of the transformed phenotype including high MAP kinase activity, partial loss of contact inhibition, and the development of foci at confluency. The IGF-IR isolated from ethanol-resistant cells was similarly resistant to ethanol in autophosphorylation reactions in vitro, whereas ethanol inhibited the autophosphorylation of IGF-IR obtained from sensitive cells. Conclusions: Our findings are the first to demonstrate the modulation of ethanol sensitivity of a tyrosine kinase receptor, and they provide a molecular basis for differential effects of ethanol on cell proliferation. [source]


Role of ,4,1 Integrins in Chemokine-Induced Monocyte Arrest under Conditions of Shear Stress

MICROCIRCULATION, Issue 1 2009
SHARON J. HYDUK
ABSTRACT Monocyte recruitment or emigration to tissues is an essential component of host defense in both acute and chronic inflammatory responses. Sequential molecular interactions mediate a cascade of tethering, rolling, arrest, stable adhesion, and intravascular crawling that culminates in monocyte diapedesis across the vascular endothelium and migration through the basement membrane of postcapillary venules. Integrins are complex adhesion and signaling molecules. Dynamic alterations in their conformation and distribution on the monocyte cell surface are required for many steps of monocyte emigration. Intracellular signaling initiated by chemokine receptors induces conformational changes in integrins that upregulate their affinity for ligands, and this is essential for monocyte arrest. This review focuses on the activation of monocyte ,4,1 integrins by endothelial chemokines, which is required for the arrest of monocytes rolling on vascular cell adhesion molecule 1 under shear flow. Using soluble ligand-binding assays and adhesion assays in parallel-plate flow chambers, critical signaling mediators in chemokine-induced ,4,1 integrin affinity upregulation and monocyte arrest have been identified, including phospholipase C, calcium, and calmodulin. [source]


Abelmoschus moschatus (Malvaceae), an aromatic plant, suitable for medical or food uses to improve insulin sensitivity

PHYTOTHERAPY RESEARCH, Issue 2 2010
I.-M. Liu
Abstract Abelmoschus moschatus (Malvaceae) is an aromatic and medicinal plant, distributed in many parts of Asia, including south Taiwan. The present study was undertaken to clarify whether the herb is effective in improving insulin resistance. Insulin resistance in rats was induced by a diet containing 60% fructose for 6 weeks. The degree of insulin resistance was measured by homeostasis model assessment of basal insulin resistance (HOMA-IR). Insulin sensitivity was calculated using the composite whole body insulin sensitivity index (ISIcomp) during the oral glucose tolerance test. Insulin receptor-related signaling mediators in soleus muscles of rats were evaluated by immunoprecipitation or immunoblotting. The extract of A. moschatus had a higher level of polyphenolic flavonoids. A. moschatus extract (200,mg/kg per day) displayed the characteristics of rosiglitazone (4,mg/kg per day) in reducing the higher HOMA-IR index as well as elevating ISIcomp in fructose chow-fed rats after a 2-week treatment. Treatment with moschatus extract for 2 weeks increased post-receptor insulin signaling mediated by enhancements in insulin receptor substrate-1-associated phosphatidylinositol 3-kinase step and glucose transporter subtype 4 translocation in insulin-resistant soleus muscles. A. moschatus is therefore proposed as potentially useful adjuvant therapy for patients with insulin resistance and/or the subjects wishing to increase insulin sensitivity. Copyright © 2009 John Wiley & Sons, Ltd. [source]


Using RNA interference to identify the different roles of SMAD2 and SMAD3 in NIH/3T3 fibroblast cells

CELL BIOCHEMISTRY AND FUNCTION, Issue 5 2008
Rong Zheng
Abstract Smad proteins are principal intracellular signaling mediators of transforming growth factor , (TGF-,) that regulate a wide range of biological processes. However, the identities of Smad partners mediating TGF-, signaling are not fully understood. We firstly examined the expression of Smad2 and Smad3 induced by TGF-, 1 in normal NIH/3T3 cells. The expression of Smad2 and Smad3 was assessed by RT-PCR and Western blotting. The results showed that the expression of Smad2 was increased after treatment with TGF-,I, but Smad3 was more sensitive to TGF-,I than Smad2. RNA interference (RNAi) provides a new approach for elucidation of gene function. Use of hairpin siRNA expression vectors for RNAi has provided a rapid and versatile method for assessing gene function in mammalian cells. Here, we have constructed Smad2 and Smad3 hairpin siRNA expression plasmids, and then transfected them into mouse NIH/3T3 cells. Endogenous Smad2 and Smad3 proteins decreased significantly at 48,h after transfection. We found the expression of Smad3 in Smad2-depleted cells was increased, however, the expression of Smad2 in Smad3-depleted cells was not changed. Consistently, the expression of Smad4 mRNA was also attenuated in Smad3-depleted cells. From these data, we suggest that Smad3, but not Smad2, may play a key role in TGF-, signaling. Copyright © 2008 John Wiley & Sons, Ltd. [source]