Home About us Contact | |||
Six-membered Chelate Ring (six-membered + chelate_ring)
Selected AbstractsBetter Performance of Monodentate P -Stereogenic Phosphanes Compared to Bidentate Analogues in Pd-Catalyzed Asymmetric Allylic AlkylationsEUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 21 2010Arnald Grabulosa Abstract The cationic allylpalladium complexes 3a,3f, 4a, 4e, 5e of type [Pd(,3 -2-Me-C3H4)P2]PF6 were synthesized using a group of monodentate P -stereogenic phosphanes, P=PPhRR, (a,f) and diphosphanes (PhRPCH2)2 (1a, 1e) or PhRPCH2Si(Me)2CH2PPhR (2e). The analogous cationic complexes with the disubstituted allyl group (,3 -1,3-Ph2 -C3H3) and monodentate phosphanes were not isolated as stable solids; only [PdCl(,3 -1,3-Ph2 -C3H3)P] (6a, 6d) were obtained. Palladium allyl complexes were screened as precatalysts in the allylic substitution of rac -3-acetoxy-1,3-diphenyl-1-propene (I) and (E)-3-acetoxy-1-phenyl-1-propene (III) with dimethyl malonate as the nucleophile. The various catalytic precursors showed a wide range of activity and selectivity. The bismonodentate phosphane complexes 3 are more active than the bidentate analogues. With regard to the regioselectivity, precursors containing monodentate phosphanes favour the formation of the linear product in the allylic substitution of cinnamyl acetate (III) compared with those containing bidentate phosphanes. With substrate I, compounds with the diphosphanes 1a and 1e, containing a five-membered chelate ring, gave low enantioselectivities (less than 10,% ee), but those with the diphosphane 2e, forming a six-membered chelate ring or with two monodentate phosphanes, afforded products with moderate enantioselectivity under standard conditions (ee up to 74,%). The results show that the performance of precursors containing monodentate phosphanes was superior to those containing bidentate ligands in both activity and selectivity. [source] Control of Intramolecular Ether-Oxygen Coordination in the Crystal Structure of Copper(II) Complexes With Dipicolylamine-Based LigandsEUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 8 2007Yuji Mikata Abstract Thirteen crystal structures of copper(II) complexes with a series of dipicolylamine (DPA)-derived ligands, N -(2-methoxyethyl)- N,N -bis(2-pyridylmethyl)amine (L1), N -[2-(2-hydroxyethyloxy)ethyl]- N,N -bis(2-pyridylmethyl)amine (L2) and N -(3-methoxypropyl)- N,N -bis(2-pyridylmethyl)amine (L3), have been determined and the factors that control the coordination of the ether-oxygen atom of these ligands to the copper centre are discussed. Complexes that have +1 or +2 charges exhibit coordination of the ether-oxygen atom, whereas neutral complexes in which two anions are bound to the copper(II) centre tend to lose the oxygen coordination. Upon chelation of the oxygen atom, L3 forms a six-membered chelate ring with respect to the 3-aminopropyl ether moiety whereas L1 and L2 form a five-membered chelate. This difference, especially in the nitrate and bromide complexes, determines whether the ether-oxygen atom chelates to the metal centre to give a monocationic complex, or the second anion coordinates to the metal centre to form the ether-free, neutral complex. The terminal anchor hydroxy group of L2 facilitates the ether-oxygen coordination via a hydrogen bond interaction to the donor atom located trans to the aliphatic nitrogen atom in the basal plane. (© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2007) [source] Crystal Structure of Garciniaphenone and Evidences on the Relationship between Keto,Enol Tautomerism and ConfigurationHELVETICA CHIMICA ACTA, Issue 7 2008Felipe Abstract Garciniaphenone (=rel- (1R,5R,7R)-3-benzoyl-4-hydroxy-8,8-dimethyl-1,7-bis(3-methylbut-2-en-1-yl)bicyclo[3.3.1]non-3-ene-2,9-dione; 1), a novel natural product, was isolated from a hexane extract of Garcinia brasiliensis fruits. The crystal structure of 1 as well as the selected geometrical and configurational features were compared with those of known related polyprenylated benzophenones. Garciniaphenone is the first representative of polyprenylated benzophenones without a prenyl substituent at C(5). Notably, the absence of a 5-prenyl substituent has an impact on the molecular geometry. The tautomeric form of 1 in the solid state was readily established by a residual-electronic-density map generated by means of a difference Fourier analysis, and there is an entirely delocalized six-membered chelate ring encompassing the keto,enol moiety. The configuration at C(7) was used to rationalize the nature of the keto,enol tautomeric form within 1. The intermolecular array in the network is maintained by nonclassical intermolecular H-bonds. [source] AIM and NBO analysisMAGNETIC RESONANCE IN CHEMISTRY, Issue 9 2010In the series of diaminoenones, large high-frequency shifts of the 1H NMR of the NH group in the cis -position relative to the carbonyl group suggests strong NH···O intramolecular hydrogen bonding comprising a six-membered chelate ring. The NH···O hydrogen bond causes an increase of the 1J(N,H) coupling constant by 2,4 Hz and high-frequency shift of the 15N signal by 9,10 ppm despite of the lengthening of the relevant NH bond. These experimental trends are substantiated by gauge-independent atomic orbital and density functional theory calculations of the shielding and coupling constants in the 3,3-bis(isopropylamino)-1-(aryl)prop-2-en-1-one (12) for conformations with the Z - and E -orientations of the carbonyl group relative to the NH group. The effects of the NH···O hydrogen-bond on the NMR parameters are analyzed with the atoms-in-molecules (AIM) and natural bond orbital (NBO) methods. The AIM method indicates a weakening of the NH···O hydrogen bond as compared with that of 1,1-di(pyrrol-2-yl)-2-formylethene (13) where NH···O hydrogen bridge establishes a seven-membered chelate ring, and the corresponding 1J(N,H) coupling constant decreases. The NBO method reveals that the LP(O) ,,*NH hyperconjugative interaction is weakened on going from the six-membered chelate ring to the seven-membered one due to a more bent hydrogen bond in the former case. A dominating effect of the NH bond rehybridization, owing to an electrostatic term in the hydrogen bonding, seems to provide an increase of the 1J(N,H) value as a consequence of the NH···O hydrogen bonding in the studied diaminoenones. Copyright © 2010 John Wiley & Sons, Ltd. [source] Different intermolecular interactions in azido[2-(diphenylphosphino)benzaldehyde semicarbazonato-,2P,N1,O]nickel(II)ACTA CRYSTALLOGRAPHICA SECTION C, Issue 7 2009Sladjana B. Novakovi The title compound, [Ni(C20H17N3OP)(N3)], is the first complex with a semicarbazide-based ligand having a P atom as one of the donors. The influence of the P atom on the deformation of the coordination geometry of the NiII ion is evident but less expressed than in the cases of complexes with analogous seleno- and thiosemicarbazide ligands. The torsion angles involving the two bonds formed by the P atom within the six-membered chelate ring have the largest values [C,P,Ni,N = 24.3,(2)° and C,C,P,Ni = ,24.2,(4)°], suggesting that the P atom considerably influences the conformation of the ring. Two types of N,H...N hydrogen bond connect the complex units into chains. [source] |