Sinusoidal Perfusion (sinusoidal + perfusion)

Distribution by Scientific Domains


Selected Abstracts


Early Hepatic Microvascular Injury in Response to Acetaminophen Toxicity

MICROCIRCULATION, Issue 5 2003
YOSHIYA ITO
ABSTRACT Objective: The hepatic toxic response to acetaminophen (APAP) is characterized by centrilobular (CL) necrosis preceded by hepatic microvascular injury and congestion. The present study was conducted to examine changes in liver microcirculation after APAP dosing. Methods: Male C57Bl/6 mice were treated with APAP (600 mg/kg body weight) by oral gavage. The livers of anesthetized mice were examined using established in vivo microscopic methods at 0, 0.5, 1, 2, 4, 6, 12 hours after APAP. Results: The levels of hepatic transaminases (i.e., alanine aminotransferase [ALT] and aspartate transaminase) increased minimally for up to 2 hours. Thereafter, their levels were significantly and progressively increased. The numbers of swollen sinusoidal endothelial cells (SECs) in periportal regions were increased (3.5-fold) from 0.5 to 6 hours, and those in CL regions were increased (4.0-fold) at 0.5 and 1 hour. The intensity of in vivo staining for formaldehyde-treated serum albumin, which is a specific ligand for SECs, was reduced from 2 to 12 hours. Erythrocytes infiltrated into the space of Disse as early as 2 hours, and the area occupied by these cells was markedly increased at 6 hours. Sinusoidal perfusion was reduced from 1 through 12 hours, with a nadir (35% decrease) at 4 and 6 hours. Phagocytic Kupffer cell activity was significantly elevated from 0.5 through 12 hours. Although gadolinium chloride minimized the changes in sinusoidal blood flow and reduced ALT levels 6 hours after APAP, it failed to inhibit endothelial swelling, extravasation of erythrocytes, and CL parenchymal necrosis. Conclusions: These results confirm that APAP-induced SEC injury precedes hepatocellular injury, supporting the hypothesis that SECs are an early and direct target for APAP toxicity. These findings also suggest that reduced sinusoidal perfusion and increased Kupffer cell activity contribute to the development of APAP-induced liver injury. [source]


Decreased hepatic nitric oxide production contributes to the development of rat sinusoidal obstruction syndrome

HEPATOLOGY, Issue 4 2003
Laurie D. Deleve M.D., Ph.D.
This study examined the role of decreased nitric oxide (NO) in the microcirculatory obstruction of hepatic sinusoidal obstruction syndrome (SOS). SOS was induced in rats with monocrotaline. Monocrotaline caused hepatic vein NO to decrease by 30% at 24 hours and by 70% at 72 hours; this decrease persisted throughout late SOS. NG -nitro-L-arginine methyl ester (L-NAME), an inhibitor of NO synthase, exacerbated monocrotaline toxicity, whereas V-PYRRO/NO, a liver-selective NO donor prodrug, restored NO levels, preserved sinusoidal endothelial cell (SEC) integrity and sinusoidal perfusion as assessed by in vivo microscopy and electron microscopy, and prevented clinical and histologic evidence of SOS. NO production in vitro by SEC and Kupffer cells, the 2 major liver cell sources of NO, decreases largely in parallel with loss of cell viability after exposure to monocrotaline. Increased matrix metalloproteinase (MMP) activity increases early on in SOS and this increase in activity has been implicated in initiating SOS. Infusion of V-PYRRO-NO prevented the monocrotaline-induced increase in MMP-9. In conclusion, decreased hepatic NO production contributes to the development of SOS. Infusion of an NO donor preserves SEC integrity and prevents development of SOS. These findings show that a decrease in NO contributes to SOS by allowing up-regulation of MMP activity, loss of sinusoidal integrity, and subsequent disruption of sinusoidal perfusion. (Hepatology 2003;38:900,908). [source]


P-selectin mediates leukocyte rolling in concanavalin-A-induced hepatitis

LIVER INTERNATIONAL, Issue 5 2005
Sandra March
Abstract: Concanavalin- A (Con-A)-induced hepatitis is an experimental model of human autoimmune hepatitis characterized by leukocyte activation and infiltration of the liver. The aim of the present study was to evaluate the role of P-selectin on leukocyte,endothelial interactions within the hepatic microvasculature in response to Con-A. Methods: The study was performed in P-selectin-deficient mice and wild-type mice pretreated with anti-P-selectin blocking monoclonal antibody (mAb) or vehicle. After 2 h of Con-A (20 mg/kg i.v.) or PBS administration, leukocyte rolling and adhesion and the index of sinusoidal perfusion were evaluated using the intravital microscopy technique in the liver. Apoptosis was determined by flow cytometry analysis of caspase-3 activity assayed on freshly isolated hepatocytes. Results: Con-A induced a significant increase in leukocyte rolling, mainly located at the central venule (2.1±0.4 vs 0.6±0.2 cells/min in wild-type mice treated with vehicle) and less marked, but still significant, in portal venules. This was associated with a significant increase in leukocyte adhesion. In P-selectin-deficient mice treated with Con-A, leukocyte rolling in portal and central venules was markedly reduced. However, leukocyte adhesion was only partially attenuated. A few sinusoids were perfused in wild-type mice treated with Con-A (26%). The percentage of perfused sinusoids was significantly higher in P-selectin-deficient mice (45%; P<0.05 vs wild-type). Similar effects were noted after the simultaneous injection of Con-A and anti-P-selecting mAb in wild-type mice. After Con-A treatment, apoptosis was markedly reduced in isolated hepatocytes of P-selectin-deficent mice (37±7% vs 75±5% in wild type). Conclusion: The results of this intravital microscopy study clearly demonstrate that P-selectin is involved in the initial leukocyte rolling that leads to the development of Con-A-induced liver injury. [source]


Ischemic preconditioning and intermittent clamping improve murine hepatic microcirculation and Kupffer cell function after ischemic injury

LIVER TRANSPLANTATION, Issue 4 2004
Katarína Vajdová
The aim of this study was to evaluate whether the protective effect of intermittent clamping and ischemic preconditioning is related to an improved hepatic microcirculation after ischemia/reperfusion injury. Male C57BL/6 mice were subjected to 75 or 120 min of hepatic ischemia and 1 or 3 hours of reperfusion. The effects of continuous ischemia, intermittent clamping, and ischemic preconditioning before prolonged ischemia on sinusoidal perfusion, leukocyte-endothelial interactions, and Kupffer cell phagocytic activity were analyzed by intravital fluorescence microscopy. Kupffer cell activation was measured by tissue levels of tumor necrosis factor (TNF)-,, and the integrity of sinusoidal endothelial cells and Kupffer cells were evaluated by electron microscopy. Continuous ischemia resulted in decreased sinusoidal perfusion rate and phagocytic activity of Kupffer cell, increased leukocyte-endothelial interactions and TNF-, levels. Both protective strategies improved sinusoidal perfusion, leukocyte-endothelial interactions and phagocytic activity of Kupffer cells after 75-minutes of ischemia, and intermittent clamping also after 120 minutes ischemia. TNF-, release was significantly reduced and sinusoidal wall integrity was preserved by both protective procedures. In conclusion, both strategies are protective against ischemia/reperfusion injury by maintaining hepatic microcirculation and decreasing Kupffer cell activation for clinically relevant ischemic periods, and intermittent clamping appears superior for prolonged ischemia. (Liver Transpl 2004;10:520,528.) [source]


Platelet Recruitment in the Murine Hepatic Microvasculature During Experimental Sepsis: Role of Neutrophils

MICROCIRCULATION, Issue 2 2006
GEORG SINGER
ABSTRACT Objectives: Sepsis is a major clinical problem that often results in the dysfunction or failure of multiple organs, including the liver. While inflammatory cell activation has been implicated as an early critical event in sepsis-induced liver dysfunction, there is growing evidence for the involvement of activated platelets in this pathologic process. Methods: Intravital microscopy was used in this study to assess the magnitude and time course of platelet adhesion in the liver microcirculation during experimental sepsis and to determine whether the platelet accumulation is linked to leukocyte infiltration. The adhesion of platelets and leukocytes in terminal hepatic venules (THV) and sinusoids was quantified at 2, 4, and 6 h after abdominal sepsis induced by cecal ligation and puncture (CLP). Results: While the rolling and firm adhesion of platelets and leukocytes in THV were not altered in the first 2 h after CLP, platelet recruitment was observed at 4 h and further elevated at 6 h after CLP. Leukocyte adhesion in THV exhibited a similar time course. A similar accumulation of blood cells in sinusoids was noted after CLP. This was accompanied by an increased number of nonperfused sinusoids. CLP-induced leukocyte and platelet recruitment in THV and sinusoids was attenuated in mice rendered neutropenic with anti-neutrophil serum. Conclusion: These findings indicate that sepsis is associated with a neutrophil-dependent recruitment of platelets in the liver microcirculation that impairs sinusoidal perfusion and may contribute to the liver dysfunction associated with sepsis. [source]


Dietary Steatotic Liver Attenuates Acetaminophen Hepatotoxicity in Mice

MICROCIRCULATION, Issue 1 2006
YOSHIYA ITO
ABSTRACT Objective: To determine whether hepatic steatosis is susceptible to acetaminophen (APAP) hepatotoxicity. Methods: Male C57Bl/6 mice were fed a "Western-style" diet (high fat and high carbohydrate) for 4 months to develop severe hepatic steatosis with mild increases in alanine aminotransferase (ALT) levels. These were compared to mice fed a standard chow diet. Results: Treatment with APAP (300 mg/kg, orally) to mice fed a regular chow increased ALT levels (519-fold) and caused hepatic centrilobular injury at 6 h. APAP increased hepatic cytochrome-P (CYP)-2E1 mRNA levels (17-fold). In vivo microscopic studies showed that APAP caused a 30% decrease in sinusoidal perfusion and the infiltration of red blood cells into the space of Disse. Electron microscopy demonstrated that numerous gaps were formed in sinusoidal endothelial cells. Mice fed the "Western-style" diet were protected from APAP hepatotoxicity as evidenced by 89% decrease in ALT levels and less centrilobular injury, which was associated with 42% decrease in CYP2E1 mRNA levels. The APAP-induced liver microcirculatory dysfunction was minimized in mice fed the "Western-style" diet. Conclusions: These results suggest that hepatic steatosis elicited by the "Western-style" diet attenuated APAP-induced hepatotoxicity by inhibiting CYP2E1 induction and by minimizing sinusoidal endothelial cell injury, leading to protection of liver microcirculation. [source]


Early Hepatic Microvascular Injury in Response to Acetaminophen Toxicity

MICROCIRCULATION, Issue 5 2003
YOSHIYA ITO
ABSTRACT Objective: The hepatic toxic response to acetaminophen (APAP) is characterized by centrilobular (CL) necrosis preceded by hepatic microvascular injury and congestion. The present study was conducted to examine changes in liver microcirculation after APAP dosing. Methods: Male C57Bl/6 mice were treated with APAP (600 mg/kg body weight) by oral gavage. The livers of anesthetized mice were examined using established in vivo microscopic methods at 0, 0.5, 1, 2, 4, 6, 12 hours after APAP. Results: The levels of hepatic transaminases (i.e., alanine aminotransferase [ALT] and aspartate transaminase) increased minimally for up to 2 hours. Thereafter, their levels were significantly and progressively increased. The numbers of swollen sinusoidal endothelial cells (SECs) in periportal regions were increased (3.5-fold) from 0.5 to 6 hours, and those in CL regions were increased (4.0-fold) at 0.5 and 1 hour. The intensity of in vivo staining for formaldehyde-treated serum albumin, which is a specific ligand for SECs, was reduced from 2 to 12 hours. Erythrocytes infiltrated into the space of Disse as early as 2 hours, and the area occupied by these cells was markedly increased at 6 hours. Sinusoidal perfusion was reduced from 1 through 12 hours, with a nadir (35% decrease) at 4 and 6 hours. Phagocytic Kupffer cell activity was significantly elevated from 0.5 through 12 hours. Although gadolinium chloride minimized the changes in sinusoidal blood flow and reduced ALT levels 6 hours after APAP, it failed to inhibit endothelial swelling, extravasation of erythrocytes, and CL parenchymal necrosis. Conclusions: These results confirm that APAP-induced SEC injury precedes hepatocellular injury, supporting the hypothesis that SECs are an early and direct target for APAP toxicity. These findings also suggest that reduced sinusoidal perfusion and increased Kupffer cell activity contribute to the development of APAP-induced liver injury. [source]


Lymphocyte function antigen-1 mediates leukocyte adhesion and subsequent liver damage in endotoxemic mice

BRITISH JOURNAL OF PHARMACOLOGY, Issue 4 2004
Xiang Li
Sepsis is associated with leukocyte activation and recruitment in the liver. We investigated the role of lymphocyte function antigen-1 (LFA-1) in endotoxin-induced leukocyte,endothelium interactions, microvascular perfusion failure, hepatocellular injury and apoptosis in the liver by use of gene-targeted mice, blocking antibodies and a synthetic inhibitor of LFA-1 (LFA703). For this purpose, mice were challenged with lipopolysaccharide (LPS)+D -galactosamine (Gal), and intravital microscopy of the liver microcirculation was conducted 6 h later. The number of firmly adherent leukocytes in response to LPS/Gal was reduced by 48% in LFA-1-deficient mice. Moreover, endotoxin-induced increases of apoptosis and enzyme markers of hepatocellular injury were decreased by 64 and 69,90%, respectively, in LFA-1-deficient mice. Furthermore, sinusoidal perfusion was improved in endotoxemic mice lacking LFA-1. A similar protective pattern was observed in endotoxemic mice pretreated with an antibody against LFA-1. Thus, immunoneutralization of LFA-1 reduced endotoxin-induced leukocyte adhesion by 55%, liver enzymes by 64,66% and apoptosis by 42%, in addition to the preservation of microvascular perfusion. Administration of a novel statin-derived inhibitor of LFA-1, LFA703, significantly decreased leukocyte adhesion (more than 56%) and the subsequent liver injury in endotoxemic mice. Thus, this study demonstrates a pivotal role of LFA-1 in supporting leukocyte adhesion in the liver. Moreover, interference with LFA-1-mediated leukocyte adhesion protects against endotoxemic liver damage, and may constitute a potential therapeutic strategy in sepsis. British Journal of Pharmacology (2004) 141, 709,716. doi:10.1038/sj.bjp.0705634 [source]