Home About us Contact | |||
Simulated Radiation (simulated + radiation)
Kinds of Simulated Radiation Selected AbstractsDecrease in Langerhans Cells and Increase in Lymph Node Dendritic Cells Following Chronic Exposure of Mice to Suberythemal Doses of Solar Simulated RadiationPHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 5 2005Pauline McLoone ABSTRACT Exposure of certain strains of mice to ultraviolet radiation (UVR) causes suppression of some innate and adaptive immune responses. One such consequence of acute UVB exposure is a reduction in the number of Langerhans cells (LC) in the epidermis and an increase in dendritic cells (DC) in lymph nodes draining the irradiated skin sites. Exposure to chronic UVB irradiation also has effects on the immune system, but it is unknown what effects are caused by repeated doses of solar simulated radiation (SSR). Consequently, the main aims of the present study were to determine whether repeated exposure to low doses of SSR would lead to similar changes in these cell populations and whether chronic doses of SSR activate a protective photoadaptation mechanism. Groups of C3H/HeN mice were irradiated daily with 3.7 J/cm2 SSR from Cleo Natural lamps for 2, 10, 20, 30 or 60 days. Further groups of mice received an additional dose of 7.4 J/cm2 SSR on days 2, 10, 30 or 60 to test for photoadaptation. The numbers of LC in the epidermis and DC in the lymph nodes draining irradiated skin sites were counted 24 h after the final irradiation. With the exception of mice irradiated for only 2 days, LC were significantly reduced throughout the chronic irradiation protocol, and no recovery occurred. DC numbers were significantly increased in the draining lymph nodes of mice irradiated for 20 days and 60 days. [source] Immune protective effect of a moisturizer with DNA repair ingredientsJOURNAL OF COSMETIC DERMATOLOGY, Issue 2 2008Cheré R Lucas MD Summary Ultraviolet (UV) light damages DNA and impairs immune surveillance. The faulty repair of DNA after UV exposure is associated with immune suppression and facilitates photodamage that leads to photoaged skin and the growth of skin cancer. Sunscreens have been developed to filter UV light from entering the skin, but are not beneficial once DNA damage has occurred. Enhancing DNA repair after UV radiation may provide added advantage and prevent UV immunosuppression. This study was performed to determine whether a product with DNA repair ingredients prevents UV-induced suppression of contact hypersensitivity responses in vivo. Solar simulated radiation was delivered on skin with and without topical treatment with a moisturizer containing DNA repair enzymes (Advanced Night Repair Concentrate). Subjects were then sensitized to the hapten dinitrochlorobenzene, and the level of resultant contact hypersensitivity response was elicited 2 weeks later. Contact hypersensitivity response measured by skin fold thickness was significantly suppressed in untreated UV-irradiated subjects but not in subjects treated with DNA repair moisturizer after solar simulated radiation. Our results indicate that DNA repair ingredients significantly prevent UV-induced immune suppression. [source] Decrease in Langerhans Cells and Increase in Lymph Node Dendritic Cells Following Chronic Exposure of Mice to Suberythemal Doses of Solar Simulated RadiationPHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 5 2005Pauline McLoone ABSTRACT Exposure of certain strains of mice to ultraviolet radiation (UVR) causes suppression of some innate and adaptive immune responses. One such consequence of acute UVB exposure is a reduction in the number of Langerhans cells (LC) in the epidermis and an increase in dendritic cells (DC) in lymph nodes draining the irradiated skin sites. Exposure to chronic UVB irradiation also has effects on the immune system, but it is unknown what effects are caused by repeated doses of solar simulated radiation (SSR). Consequently, the main aims of the present study were to determine whether repeated exposure to low doses of SSR would lead to similar changes in these cell populations and whether chronic doses of SSR activate a protective photoadaptation mechanism. Groups of C3H/HeN mice were irradiated daily with 3.7 J/cm2 SSR from Cleo Natural lamps for 2, 10, 20, 30 or 60 days. Further groups of mice received an additional dose of 7.4 J/cm2 SSR on days 2, 10, 30 or 60 to test for photoadaptation. The numbers of LC in the epidermis and DC in the lymph nodes draining irradiated skin sites were counted 24 h after the final irradiation. With the exception of mice irradiated for only 2 days, LC were significantly reduced throughout the chronic irradiation protocol, and no recovery occurred. DC numbers were significantly increased in the draining lymph nodes of mice irradiated for 20 days and 60 days. [source] Sunscreens containing the broad-spectrum UVA absorber, Mexoryl® SX, prevent the cutaneous detrimental effects of UV exposure: a review of clinical study resultsPHOTODERMATOLOGY, PHOTOIMMUNOLOGY & PHOTOMEDICINE, Issue 4 2008Anny Fourtanier Background: UVA exposure of human skin mainly produces reactive oxygen species (ROS) leading to DNA, cell and tissue damage. It alters immune function, pigmentation and it is certainly responsible for a large part of photoaging changes. Moreover UVA is implicated in the etiology of several photodermatoses. As a consequence, to provide adequate protection, sunscreens or skin care products for daily use protective products need UVA absorbers combined with UVB ones. Aim: To assess the efficacy of sunscreens containing a broad-spectrum UVA absorber the Mexoryl® SX or ecamsule and to compare formulations with and without it through a large number of clinical studies in human volunteers and patients. Methods: The following assessments were conducted: ,Prevention of excessive pigmentation induced by UV exposure in Caucasian and Asian skins using a method that measures pigmentation protection factors (PPF). ,Efficacy against DNA damage by measurement of pyrimidine dimer formation and p53 protein accumulation. ,Protection of immune system using delayed type hypersensitivity (DTH) reactions to recall antigens, isomerization of urocanic acid (UCA), alteration of Langerhans cells (LC) density, morphology and function. ,Reduction of epidermal and dermal alterations induced by repeated UVA or UV solar simulated radiation (SSR) using histology or immunohistology. ,Prevention of the polymorphous light eruption (PMLE) in patients prone to develop this disease. Results: Mexoryl® SX-containing formulations showed a dose-dependent level of protection against pigmentation. For a same sun protection factor (SPF) the higher the UVA protection was, the higher was the PPF. Pyrimidine dimer formation and p53 accumulation were significantly reduced by formulations with Mexoryl® SX. In the studies looking at the suppression of DTH reactions to recall antigens by the different UV spectra, the LC alterations and the cis UCA formation, Mexoryl® SX formulations always showed a higher protective potency than sunscreen without it even when the protection against erythema was similar (products with same SPF). Mexoryl® SX formulations also prevented or significantly decreased to minimal, ferritin, tenascin and lysozyme expression induced by repeated UVA or SSR exposure. It also reduced the enhancement of collagenase 2 mRNA expression induced by SSR exposure. Finally PMLE study demonstrated that UVA protection was essential for the prevention of this photodermatose. Conclusion: Mexoryl® SX formulated in sunscreens or daily use products have been shown to be an effective UV absorber, leading to an increased efficacy of these products against a large number of biological damage induced by UVA, SSR or sun exposure. [source] A full-UV spectrum absorbing daily use cream protects human skin against biological changes occurring in photoagingPHOTODERMATOLOGY, PHOTOIMMUNOLOGY & PHOTOMEDICINE, Issue 4 2000S. Seité Background: There is overwhelming evidence that exposure of human skin to ultraviolet radiations (UVR) leads to the development of cutaneous photoaging and eventually to neoplasia. This study was designed to evaluate in humans the protection afforded by a daily use cream containing a photostable combination of UVB and UVA absorbers (Uvinul® N539, Parsol® 1789 and Mexoryl® SX) providing a continuous absorption through the entire UV spectrum, against damages induced by repeated daily exposure to solar simulated radiation (SSR). Methods: Buttock skin of 12 healthy volunteers was exposed 5 days per week for 6 weeks to one minimal erythema dose of solar simulated radiation per exposure. The following parameters in treated and untreated skin were evaluated: erythema, pigmentation, skin hydration, skin microtopography, histology and immunochemistry, and collagen and metalloproteinase (MMP) mRNA levels. Results: In SSR exposed unprotected skin sites, we observed melanization and changes in the skin hydration and microtopography. The epidermis revealed a significant increase in stratum corneum and stratum granulosum thickness. In the dermis, an enhanced expression of tenascin and a reduced expression of type I pro-collagen were evidenced just below the dermal epidermal junction. Although we were unable to visualize any change in elastic fibers in exposed buttock skin, a slightly increased deposition of lysozyme and alpha 1 antitrypsin on these fibers was observed using immunofluorescence techniques. Furthermore, types I and III collagen mRNA were slightly increased and a significant enhancement (up to 2.8-fold) of MMP-2 mRNA level was observed. The daily use cream was shown to prevent all these biological changes. Conclusion: Our results show in vivo that an appropriate full-UV spectrum product significantly reduces the solar-UV-induced skin damage, demonstrating the benefit of daily photoprotection. [source] Accumulated p53 protein and UVA protection level of sunscreensPHOTODERMATOLOGY, PHOTOIMMUNOLOGY & PHOTOMEDICINE, Issue 1 2000S. Seité Nuclear p53 expression is a sensitive parameter for the detection of ultraviolet (UV)-induced skin damage, and it has been used as an endpoint to evaluate the effectiveness of sunscreens. In this study, we compared the protection provided by two sunscreens having identical sun protection factors (SPF) but different UVA protection factors (UVA-PF) measured by the persistent pigment darkening method (PPD). The SPF of the sunscreens was 7 and the UVA-PF were respectively 7 and 3. Nuclear p53 protein was quantified in human skin biopsies treated with sunscreens and exposed 8 times to 5 MED of solar simulated radiation (SSR). The results showed that both sunscreens offered only partial protection against the increased expression of nuclear p53 protein induced by repetitive SSR exposures. However, a significantly lower level of p53-positive cells was found in areas protected with the sunscreen having the higher UVA-PF compared to the other sunscreen protected areas. In order to verify whether the difference in efficacy of these products was due to the difference in UVA absorption capacity, we quantified epidermal p53 protein accumulation after 8 exposures to either UVA (320,400 nm) or UVA1 (340,400 nm). We showed that as with SSR, repetitive exposures to 12.5 and 25 J/cm2 of UVA or UVA1 induced a significant increase in p53-positive cells in the human epidermis. These results confirmed that SPF determined on the basis of an acute erythemal reaction does not predict the level of protection against cumulative damage. They also showed that the protection provided by two sunscreens with different UVA protection factors is different (based on nuclear p53 protein accumulation), and that the PPD method can distinguish varying levels of sunscreen efficacy against UVA-induced cell damage. [source] |