Shows Differences (shows + difference)

Distribution by Scientific Domains


Selected Abstracts


CO and NO desorption from N-bounded carbonaceous surface complexes: density functional theory calculations

ASIA-PACIFIC JOURNAL OF CHEMICAL ENGINEERING, Issue 3 2010
Shaobin Wang
Abstract The reaction of N-bounded carbon with oxygen and subsequent desorption at molecular level was investigated using a density functional theory. The calculations show that the structure of surface N-containing carbon complexes will show different behaviour in CO and NO desorption after chemisorption of O2. For the dissociative adsorption of O2 on N-containing carbon surface, there is no significant difference in armchair and zigzag structure in terms of thermodynamics. However, the desorption of CO and NO from adsorbed complexes shows difference depending on the graphite structure. For zigzag structure, desorption of CO will be more favourable than NO, while for armchair CO and NO desorption will both be favourable. On the basis of the computation results, a reaction mechanism for N-bounded carbon combustion is proposed. Copyright © 2009 Curtin University of Technology and John Wiley & Sons, Ltd. [source]


Comparison of the inward- and outward-open homology models and ligand binding of human P-glycoprotein

FEBS JOURNAL, Issue 23 2009
Ilza K. Pajeva
An homology model of human P-glycoprotein, based on the X-ray structure of the recently resolved mouse P-glycoprotein, is presented. The model corresponds to the inward-facing conformation competent for drug binding. From the model, the residues involved in the protein-binding cavity are identified and compared with those in the outward-facing conformation of human P-glycoprotein developed previously based on the Sav1866 structure. A detailed analysis of the interactions of the cyclic peptides QZ59- RRR and QZ59- SSS is presented in both the X-ray structures of mouse P-glycoprotein and the human P-glycoprotein model generated by ligand docking. The results confirm the functional role of transmembrane domains TM4, TM6, TM10 and TM12 as entrance gates to the protein cavity, and also imply differences in their functions. The analysis of the cavities in both models suggests that the ligands remain bound to the same residues during the transition from the inward- to the outward-facing conformations. The analysis of the ligand,protein interactions in the X-ray complexes shows differences in the residues involved, as well as in the specific interactions performed by the same ligand within the same protein. This observation is supported by docking of the QZ59 ligands into human P-glycoprotein, thus aiding in the understanding of the complex behavior of P-glycoprotein substrates and inhibitors. The results confirm the possibility for multispecific drug interactions of the protein, and are important for elucidating the P-glycoprotein function and ligand interactions. [source]


Streamwater quality as affected by wild fires in natural and manmade vegetation in Malaysian Borneo

HYDROLOGICAL PROCESSES, Issue 5 2004
Anders Malmer
Abstract In 1998 a wild fire struck a paired catchment research area under long-term monitoring of hydrological and nutrient budgets. Streamwater quality as concentrations of dissolved and suspended particulate matter was monitored during 1·5,2·5 years after the fire in streams from seven different catchments. As the catchments, due to earlier experimental treatments, had different vegetations, varying effects related to different fire intensities were observed. The highest, mean stormflow, suspended sediment concentrations resulted from intensive fire in secondary vegetation that had experienced severe soil disturbance in previous treatments (crawler tractor timber extraction 10 years earlier). Stormflow concentrations were typically still about 400 mg l,1 in 1999 (10,21 months after the fire), which was about the maximum recorded concentration in streams during initial soil disturbance in 1988. Forest fire in natural forest resulted in less than half as high stormflow concentrations. For dissolved elements in streamwater there was a positive relation between fuel load (and fire intensity) and concentration and longevity of effects. Stream baseflow dissolved nutrient concentrations were high in the months following the fire. Mean baseflow K concentrations were 8,15 mg l,1 in streams draining catchments with intensive fire in secondary vegetation with large amounts of fuel. After controlled fire for forest plantation establishment in 1988 corresponding concentrations were 3,5 mg l,1, and after forest fire in natural forest in this study about 2 mg l,1. This study shows differences in response from controlled fire for land management, forest fire in natural forests and wild fires in manmade vegetations. These differences relate to resistance and resilience to fire for the involved ecosystems. There is reason to believe that wild fires and repeated wild fires during or after droughts, in successions caused by human influence, may lead to larger losses of ecosystem nutrient capital from sites compared with forest fires in natural forests. As fire in the humid tropics becomes more common, in an increasingly spatially fragmented landscape, it will be important to be aware of these differences. Copyright © 2004 John Wiley & Sons, Ltd. [source]


The extensive polymorphism of KIR genes

IMMUNOLOGY, Issue 1 2010
Derek Middleton
Summary The functions of human natural killer (NK) cells are controlled by diverse families of antigen receptors. Prominent among these are the killer cell immunoglobulin-like receptors (KIR), a family of genes clustered in one of the most variable regions of the human genome. Within this review we discuss the vast polymorphism of the KIR gene complex which rivals that of the human leucocyte antigen (HLA) complex. There are several aspects to this polymorphism. Initially there is presence/absence of individual KIR genes, with four of these genes, termed framework genes, being present in all individuals tested to date, except on those very occasional instances when the gene has been deleted. Within each gene, alleles are present at different frequencies. We provide details of a new website that enables convenient searching for data on KIR gene, allele and genotype frequencies in different populations and show how these frequencies vary in different worldwide populations and the high probability of individuals differing in their KIR repertoire when both gene and allele polymorphism is considered. The KIR genes present in an individual may be classified into A and/or B haplotypes, which respectively have a more inhibitory role or a more activating role on the function of the NK cell. Family studies have been used to ascertain the make-up of these haplotypes, inclusion of allele typing enabling determination of whether one or two copies of a particular gene is present. In addition to genetic diversification the KIR gene complex shows differences at the functional level with different alleles having different protein expression levels and different avidity with their HLA ligand. [source]


Numerical stability of unsteady stream-function vorticity calculations

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING, Issue 6 2003
E. Sousa
Abstract The stability of a numerical solution of the Navier,Stokes equations is usually approached by con- sidering the numerical stability of a discretized advection,diffusion equation for either a velocity component, or in the case of two-dimensional flow, the vorticity. Stability restrictions for discretized advection,diffusion equations are a very serious constraint, particularly when a mesh is refined in an explicit scheme, so an accurate understanding of the numerical stability of a discretization procedure is often of equal or greater practical importance than concerns with accuracy. The stream-function vorticity formulation provides two equations, one an advection,diffusion equation for vorticity and the other a Poisson equation between the vorticity and the stream-function. These two equations are usually not coupled when considering numerical stability. The relation between the stream-function and the vorticity is linear and so has, in principle, an exact inverse. This allows an algebraic method to link the interior and the boundary vorticity into a single iteration scheme. In this work, we derive a global time-iteration matrix for the combined system. When applied to a model problem, this matrix formulation shows differences between the numerical stability of the full system equations and that of the discretized advection,diffusion equation alone. It also gives an indication of how the wall vorticity discretization affects stability. Despite the added algebraic complexity, it is straightforward to use MATLAB to carry out all the matrix operations. Copyright © 2003 John Wiley & Sons, Ltd. [source]


Experimental studies of mineralogical assemblages of metasedimentary rocks at Earth's mantle transition zone conditions

JOURNAL OF METAMORPHIC GEOLOGY, Issue 2 2007
L. F. DOBRZHINETSKAYA
Abstract Metasedimentary rocks, a major component of the continental crust, are abundant within ultra-high pressure (UHP) metamorphic terranes related to continental collisions. The presence of diamond, coesite, and relics of decompressed minerals in these rocks suggests that they were subducted to a depth of more than 150,250 km. Reconnaissance experiments at 9,12 GPa and 1000,1300 °C on compositions corresponding to felsic rocks from diamond-bearing UHP terranes of Germany and Kazakhstan show that at higher pressures they consist of majoritic garnet, Al-Na-rich clinopyroxene, stishovite, solid solution of KAlSi3O8 -NaAlSi3O8 hollandite, topaz-OH, and TiO2 with , -PbO2 structure. Comparison of our data with experiments conducted by others at similar P,T conditions shows differences, which are due to variations in bulk chemistry and the type of starting material (gel, oxides, minerals). These differences may affect correct establishment of the ,point of no return' of subducted continental lithologies. This paper discusses the implication of the experimental data with regard to naturally existing UHP metamorphic rocks and their significance for our understanding of the deep subduction of continental material. [source]


Temporal detection in human vision: dependence on eccentricity

OPHTHALMIC AND PHYSIOLOGICAL OPTICS, Issue 2 2002
R. F. Hess
Studies of human perception of time-varying luminance often aim to estimate either temporal impulse response shapes or temporal modulation transfer functions (MTFs) of putative temporal processing mechanisms. Previously, temporal masking data have been used to estimate the properties and numbers of these temporal mechanisms in central vision for 1 cycle per degree (cpd) targets [Fredericksen and Hess (1998)]. The same methods have been used to explore how these properties change with stimulus energy [Fredericksen and Hess (1997)] and spatial frequency [Fredericksen and Hess (1999)]. We present here analyses of the properties of temporal mechanisms that detect temporal variations of luminance in peripheral vision. The results indicate that a two-filter model provides the best model for our masking data, but that no multiple filter model provides an acceptable fit across the range of parameters varied in this study. Single-filter modelling shows differences between processing mechanisms at 1 cpd in central vision and those that operate eccentrically. We find evidence that this change is because of differences in relative sensitivities of the mechanisms, and to differences in fundamental mechanism impulse responses. [source]


High-resolution structure of human cytoglobin: identification of extra N- and C-termini and a new dimerization mode

ACTA CRYSTALLOGRAPHICA SECTION D, Issue 6 2006
Masatomo Makino
Cytoglobin (Cgb) is a recently discovered member of the vertebrate haem-containing globin family. The structure of a new crystal form of wild-type human Cgb (space group C2) was determined at a resolution of 1.68,Å. The results show the presence of an additional helix in the N-terminal residues (4,­20) prior to the A helix and an ordered loop structure in the C-terminal region (168,188), while these extended peptides were invisible owing to disorder in the previously reported structures using a P3221 crystal at a resolution of 2.4,Å. A detailed comparison of the two crystal structures shows differences in the conformation of the residues (i.e. Arg84) in the haem environment owing to a different dimeric arrangement. [source]