Shortwave Radiation (shortwave + radiation)

Distribution by Scientific Domains


Selected Abstracts


Processes controlling rapid temperature variations on rock surfaces,

EARTH SURFACE PROCESSES AND LANDFORMS, Issue 5 2010
Jamie L. Molaro
Abstract In arid environments, thermal oscillations are an important source of rock weathering. Measurements of temperature have been made on the surface of rocks in a desert environment at a sampling interval of 0·375,s, with simultaneous measurements of wind speed, air temperature, and incoming shortwave radiation. Over timescales of hours, the temperature of the rock surface was determined primarily by shortwave radiation and air temperature, while rapid temperature variations, high dT/dt, at intervals of seconds or less, were determined by wind speed. The maximum values of temperature change and time spent above 2°C,min,1 increased at high measurement rates and were much higher than previously reported. The maximum recorded value of dT/dt was 137°C,min,1 and the average percentage time spent above 2°C,min,1 was ,70 ± 13%. Maximum values of dT/dt did not correlate with the maximum values of time spent above 2°C,min,1. Simultaneous measurements of two thermocouples 5·5,cm apart on a single rock surface had similar temperature and dT/dt values, but were not correlated at sampling intervals of less than 10,s. It is suggested that this is resulting from rapid fluctuations due to small spatial and timescale wind effects that are averaged out when data is taken at longer sampling intervals, ,10,s or greater. Published in 2010 by John Wiley & Sons, Ltd. [source]


Evaluating the impacts of climate and elevated carbon dioxide on tropical rainforests of the western Amazon basin using ecosystem models and satellite data

GLOBAL CHANGE BIOLOGY, Issue 1 2010
HIROFUMI HASHIMOTO
Abstract Forest inventories from the intact rainforests of the Amazon indicate increasing rates of carbon gain over the past three decades. However, such estimates have been questioned because of the poor spatial representation of the sampling plots and the incomplete understanding of purported mechanisms behind the increases in biomass. Ecosystem models, when used in conjunction with satellite data, are useful in examining the carbon budgets in regions where the observations of carbon flows are sparse. The purpose of this study is to explain observed trends in normalized difference vegetation index (NDVI) using climate observations and ecosystem models of varying complexity in the western Amazon basin for the period of 1984,2002. We first investigated trends in NDVI and found a positive trend during the study period, but the positive trend in NDVI was observed only in the months from August to December. Then, trends in various climate parameters were calculated, and of the climate variables considered, only shortwave radiation was found to have a corresponding significant positive trend. To compare the impact of each climate component, as well as increasing carbon dioxide (CO2) concentrations, on evergreen forests in the Amazon, we ran three ecosystem models (CASA, Biome-BGC, and LPJ), and calculated monthly net primary production by changing a climate component selected from the available climate datasets. As expected, CO2 fertilization effects showed positive trends throughout the year and cannot explain the positive trend in NDVI, which was observed only for the months of August to December. Through these simulations, we demonstrated that the positive trend in shortwave radiation can explain the positive trend in NDVI observed for the period from August to December. We conclude that the positive trend in shortwave radiation is the most likely driver of the increasing trend in NDVI and the corresponding observed increases in forest biomass. [source]


The surface radiation budget over North America: gridded data assessment and evaluation of regional climate models

INTERNATIONAL JOURNAL OF CLIMATOLOGY, Issue 15 2009
Marko Markovic
Abstract While surface station observations of downwelling radiation offer accuracy at high temporal resolution, they do not easily allow an evaluation of model surface radiation budgets (SRB) over a wide geographical area. We evaluate three gridded SRB data sets against detailed observations from six surface radiation sites from the US surface radiation (SURFRAD) network. We subsequently use the most accurate surrogate observational data set for evaluation of model-simulated SRB. The data sets assessed are: ERA40,reanalysis of European Centre for Medium-Range Weather Forecasts (ECMWF), North American Regional Reanalysis (NARR),regional reanalysis of National Centres for Environmental Prediction (NCEP) and the surface radiative budget (SRB) from the International Satellite Cloud Climatology Project (ISCCP). Due to varying constraints with respect to temporal coverage of each data set, the evaluation period used in this study is 1996,2001, inclusive. The ERA40 downwelling longwave radiation (DLR) appears the most accurate surrogate observation, while both ERA40 and ISCCP show accurate results when the incoming shortwave radiation (ISR) is considered across the annual cycle. Winter DLR is less accurate in ISCCP with a positive bias and lack of very low (<200 Wm,2) flux values. The NARR SRB shows a large positive bias in the ISR throughout the annual cycle, linked to a significant underestimate of cloud cover. The ERA40 data are subsequently used to evaluate the simulated SRB in three regional climate models across North America. With respect to solar radiation, cloud cover biases are seen to be crucial, while for longwave fluxes both cloud fraction and in-cloud water content are important to simulate correctly. Inclusion of trace gases beyond H2O, CO2 and O3 appears necessary for an accurate calculation of clear-sky longwave radiation. Error compensation frequently occurs between the various components contributing to a model total-sky SRB. This is important to consider when trying to identify the underlying causes of errors in the simulated total SRB. Copyright © 2009 Royal Meteorological Society [source]


Mass balance of a slope glacier on Kilimanjaro and its sensitivity to climate

INTERNATIONAL JOURNAL OF CLIMATOLOGY, Issue 7 2008
Thomas Mölg
Abstract Meteorological and glaciological measurements obtained at 5873 m a.s.l. on Kersten Glacier, a slope glacier on the southern flanks of Kilimanjaro, are used to run a physically-based mass balance model for the period February 2005 to January 2006. This shows that net shortwave radiation is the most variable energy flux at the glacier-atmosphere interface, governed by surface albedo. The majority of the mass loss (,65%) is due to sublimation (direct conversion of snow/ice to water vapour), with melting of secondary importance. Sensitivity experiments reveal that glacier mass balance is 2,4 times more sensitive to a 20% precipitation change than to a 1 °C air temperature change. These figures also hold when the model is run with input data representative of a longer term (1979,2004) mean period. Results suggest that a regional-scale moisture projection for the 21st century is crucial to a physically-based prediction of glacier retention on Africa's highest mountain. Copyright © 2007 Royal Meteorological Society [source]


Guidelines for Riparian Vegetative Shade Restoration Based Upon a Theoretical Shaded-Stream Model,

JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, Issue 6 2008
David R. DeWalle
Abstract:, Guidelines for riparian vegetative shade restoration were developed using a theoretical model of total daily radiation received by a shaded stream. The model assumed stream shading by nontransmitting, vertical or overhanging, solid vegetation planes in infinitely long reaches. Radiation components considered in the model were direct beam shortwave on the stream centerline, diffuse atmospheric shortwave, shortwave reflected by vegetation, atmospheric longwave, and longwave emitted by vegetation. Potential or extraterrestrial shortwave irradiation theory was used to compute beam shortwave radiation received at the stream centerline, and view factor theory was used to compute diffuse radiation exchange among stream, vegetation, and atmospheric planes. Model shade effects under clear skies were dominated by reductions in receipt of direct beam shortwave radiation. Model shade effects with cloudy skies were dominated by the "view factor effect" or the decreases in diffuse shortwave and longwave radiation from the atmosphere balanced against increases in longwave radiation from vegetation. Model shade effects on shortwave radiation reflected by vegetation were found to be negligible. The model was used to determine the vegetation height (H) to stream width (W) ratios needed to achieve 50, 75, and 90 % shade restoration for mid-latitude conditions on clear and cloudy days. Ratios of vegetation height to stream width, for dense nontransmitting vegetation, generally ranged from 1.4 to 2.3 for 75% shade restoration at a mid-latitude site (40°N). The model was used to show H/W needed for E-W vs. N-S stream azimuths, varying stream latitudes between 30° and 50°N, channels with overhanging vegetation, channels undergoing width changes, as well as the limits to shade restoration on very wide channels. [source]