Short-term Load Forecasting (short-term + load_forecasting)

Distribution by Scientific Domains


Selected Abstracts


Short-term load forecasting using informative vector machine

ELECTRICAL ENGINEERING IN JAPAN, Issue 2 2009
Eitaro Kurata
Abstract In this paper, a novel method is proposed for short-term load forecasting, which is one of the important tasks in power system operation and planning. The load behavior is so complicated that it is hard to predict the load. The deregulated power market is faced with the new problem of an increase in the degree of uncertainty. Thus, power system operators are concerned with the significant level of load forecasting. Namely, probabilistic load forecasting is required to smooth power system operation and planning. In this paper, an IVM (Informative Vector Machine) based method is proposed for short-term load forecasting. IVM is one of the kernel machine techniques that are derived from an SVM (Support Vector Machine). The Gaussian process (GP) satisfies the requirements that the prediction results are expressed as a distribution rather than as points. However, it is inclined to be overtrained for noise due to the basis function with N2 elements for N data. To overcome this problem, this paper makes use of IVM that selects necessary data for the model approximation with a posteriori distribution of entropy. That has a useful function to suppress the excess training. The proposed method is tested using real data for short-term load forecasting. © 2008 Wiley Periodicals, Inc. Electr Eng Jpn, 166(2): 23, 31, 2009; Published online in Wiley InterScience (www. interscience.wiley.com). DOI 10.1002/eej.20693 [source]


On the use of reactive power as an endogenous variable in short-term load forecasting

INTERNATIONAL JOURNAL OF ENERGY RESEARCH, Issue 5 2003
P. Jorge Santos
Abstract In the last decades, short-term load forecasting(STLF) has been the object of particular attention in the power systems field. STLF has been applied almost exclusively to the generation sector, based on variables, which are transversal to most models. Among the most significant variables we can find load, expressed as active power (MW), as well as exogenous variables, such as weather and economy-related ones; although the latter are applied in larger forecasting horizons than STLF. In this paper, the application of STLF to the distribution sector is suggested including inductive reactive power as a forecasting endogenous variable. The inclusion of this additional variable is mainly due to the evidence that correlations between load and weather variables are tenuous, due to the mild climate of the actual case-study system and the consequent feeble penetration of electrical heating ventilation and air conditioning loads. Artificial neural networks (ANN) have been chosen as the forecasting methodology, with standard feed forward back propagation algorithm, because it is a largely used method with generally considered satisfactory results. Usually the input vector to ANN applied to load forecasting is defined in a discretionary way, mainly based on experience, on engineering judgement criteria and on concern about the ANN dimension, always taking into consideration the apparent (or actually evaluated) correlations within the available data. The approach referred in the paper includes pre-processing the data in order to influence the composition of the input vector in such a way as to reduce the margin of discretion in its definition. A relative entropy analysis has been performed to the time series of each variable. The paper also includes an illustrative case study. Copyright © 2003 John Wiley & Sons, Ltd. [source]