Shorter Residence Time (shorter + residence_time)

Distribution by Scientific Domains


Selected Abstracts


Estimation of mean residence times of subsurface waters using seasonal variation in deuterium excess in a small headwater catchment in Japan

HYDROLOGICAL PROCESSES, Issue 3 2007
Naoki Kabeya
Abstract We measured deuterium excess (d = ,D , 8,18O) in throughfall, groundwater, soil water, spring water, and stream water for 3 years in a small headwater catchment (Matsuzawa, 0·68 ha) in the Kiryu Experimental Watershed in Japan. The d value represents a kinetic effect produced when water evaporates. The d value of the throughfall showed a sinusoidal change (amplitude: 6·9, relative to Vienna standard mean ocean water (V-SMOW)) derived from seasonal changes in the source of water vapour. The amplitude of this sinusoidal change was attenuated to 1·3,6·9, V-SMOW in soil water, groundwater, spring water, and stream water. It is thought that these attenuations derive from hydrodynamic transport processes in the subsurface and mixing processes at an outflow point (stream or spring) or a well. The mean residence time (MRT) of water was estimated from d value variations using an exponential-piston flow model and a dispersion model. MRTs for soil water were 0,5 months and were not necessarily proportional to the depth. This may imply the existence of bypass flow in the soil. Groundwater in the hillslope zone had short residence times, similar to those of the soil water. For groundwater in the saturated zone near the spring outflow point, the MRTs differed between shallow and deeper groundwater; shallow groundwater had a shorter residence time (5,8 months) than deeper groundwater (more than 9 months). The MRT of stream water (8,9 months) was between that of shallow groundwater near the spring and deeper groundwater near the spring. The seasonal variation in the d value of precipitation arises from changes in isotopic water vapour composition associated with seasonal activity of the Asian monsoon mechanism. The d value is probably an effective tracer for estimating the MRT of subsurface water not only in Japan, but also in other East Asian countries influenced by the Asian monsoon. Copyright © 2006 John Wiley & Sons, Ltd. [source]


Groundwater fluctuations and footslope ferricrete soils in the humid tropical zone of southern Cameroon

HYDROLOGICAL PROCESSES, Issue 16 2005
Emile Temgoua
Abstract This paper discusses the relationship between the differentiation of ferruginous accumulations and the variable water saturation of footslope soil patterns. An analysis of the slope morphology of a typical hill in the forest zone of southern Cameroon and a seasonal survey of the levels of groundwaters, springs and rivers were considered in relation to the petrology of different soil patterns. The study site is a tabular hillock whose slopes present a progressive development from steep to gentle slopes. The variable residence time of water within the soil, creating an alternation of reducing and oxidizing conditions, affects soil chemistry, structure and lateral extension of the soil patterns. The ferruginous soil patterns, being formed on the footslopes, gradually increase in extent with decreasing slope angle and the relative rise of the groundwater level. The steep footslopes, where groundwater has a shorter residence time, show a soft mottled clay pattern, restricted to the bottom part of the slope. The moderate footslopes exhibit a deep permanent and a temporary perched groundwater table. The latter, with its regular capillary fringe, contributes to more reducing conditions within isolated domains in the soil patterns, and thus to the alternation with oxidizing conditions, generating a continuous hard soil pattern (massive carapace). The more gently dipping footslopes exhibit groundwater levels near the surface and also a significant amplitude of groundwater fluctuation. Iron, previously accumulated in moderate footslope patterns, is reduced, remobilized, and leached. The soil patterns formed develop into a variegated carapace, more extended along the slope, containing less iron, but nevertheless more hardened, due to the important fluctuations of the groundwater table. These patterns are limited to the zone of groundwater fluctuation and deteriorate as the water fluctuation zone recedes. Copyright © 2005 John Wiley & Sons, Ltd. [source]


ACIDIC ELECTROLYZED WATER PROPERTIES AS AFFECTED BY PROCESSING PARAMETERS AND THEIR RESPONSE SURFACE MODELS

JOURNAL OF FOOD PROCESSING AND PRESERVATION, Issue 1 2004
GABRIEL O. I. EZEIKE
Several studies of acidic electrolyzed (EO) water demonstrated the efficacy of EO water for inactivation of different foodborne pathogens and reported on the chemical species present in EO water. This study was conducted to investigate the effect of production parameters (voltage, NaCl concentration, flow rate, and temperature) on the properties of EO water and to model the complex reactions occurring during the generation of EO water. At 0.1% salt concentration, EO water was produced at 2, 10, and 28 V. However, due to high conductivity of the electrolyte at 0.5% salt concentration, the voltage applied across the cell was limited to 7 V. The electrolyte flow rate was set at 0.5, 2.5, and 4.5 L/mn. For pH and oxidation-reduction potential (ORP), NaCl concentration was the most significant factor followed by voltage, electrolyte flow rate and temperature, respectively. However, in the case of residual chlorine, flow rate was relatively more important than voltage. Response surface methodology yielded models to predict EO water properties as functions of the process parameters studied, with very high coefficients of determination (R2= 0.872 to 0.938). In general, the higher the NaCl concentration and voltage, the higher the ORP and residual chlorine of EO water. Increased electrolyte flow rate will produce EO water with lower ORP and residual chlorine due to the shorter residence time in the electrolytic cell. [source]


Characterization of downflowing high velocity fluidized beds

AICHE JOURNAL, Issue 3 2000
Chunshe Cao
A downer-riser circulating high velocity fluidization apparatus was developed to study the fundamentals of downflowing gas-solid particle mixtures. The acceleration and deceleration of solids due to the influences of the entrance and exit sections result in a relatively uniform axial solids distribution. Radial solid density profiles detected with an X-ray imaging system in the downer show the existence of a core-annulus flow with a dilute core surrounded by a denser wall region. Local solids flux profiles were obtained with an aspirating probe device and the solid velocity profile obtained from the two measured quantities. These confirm that the majority of solids segregates in a wall region that flows faster than the dilute core region. Thus, the shorter residence time in the high-speed downer wall region is coupled with faster reaction rates due to the accompanying high concentration of catalyst, while the dilute core has slower reaction rates with longer residence time due to the lower catalyst concentration and flow velocity. This results in much more uniform reaction extent over the cross-sectional area of the downer and, therefore, should improve the product selectivity. [source]