Home About us Contact | |||
Short Time Span (short + time_span)
Selected AbstractsAboveground plant biomass, carbon, and nitrogen dynamics before and after burning in a seminatural grassland of Miscanthus sinensis in Kumamoto, JapanGCB BIOENERGY, Issue 2 2010YO TOMA Abstract Although fire has been used for several thousand years to maintain Miscanthus sinensis grasslands in Japan, there is little information about the nutrient dynamics in these ecosystems immediately after burning. We investigated the loss of aboveground biomass; carbon (C) and nitrogen (N) dynamics; surface soil C change before and after burning; and carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) fluxes 2 h after burning in a M. sinensis grassland in Kumamoto, Japan. We calculated average C and N accumulation rates within the soil profile over the past 7300 years, which were 58.0 kg C ha,1 yr,1 and 2.60 kg N ha,1 yr,1, respectively. After burning, 98% of aboveground biomass and litter were consumed. Carbon remaining on the field, however, was 102 kg C ha,1. We found at least 43% of C was possibly lost due to decomposition. However, remaining C, which contained ash and charcoal, appeared to contribute to C accumulation in soil. There was no difference in the amount of 0,5 cm surface soil C before and after burning. The amount of remaining litter on the soil surface indicated burning appeared not to have caused a reduction in soil C nor did it negatively impact the sub-surface vegetative crown of M. sinensis. Also, nearly 50 kg N ha,1 of total aboveground biomass and litter N was lost due to burning. Compared with before the burning event, postburning CO2 and CH4 fluxes from soil appeared not to be directly affected by burning. However, it appears the short time span of measurements of N2O flux after burning sufficiently characterized the pattern of increasing N2O fluxes immediately after burning. These findings indicate burning did not cause significant reductions in soil C nor did it result in elevated CO2 and CH4 emissions from the soil relative to before the burning event. [source] Mechanical deformation model of the western United States instantaneous strain-rate fieldGEOPHYSICAL JOURNAL INTERNATIONAL, Issue 1 2006Fred F. Pollitz SUMMARY We present a relationship between the long-term fault slip rates and instantaneous velocities as measured by Global Positioning System (GPS) or other geodetic measurements over a short time span. The main elements are the secularly increasing forces imposed by the bounding Pacific and Juan de Fuca (JdF) plates on the North American plate, viscoelastic relaxation following selected large earthquakes occurring on faults that are locked during their respective interseismic periods, and steady slip along creeping portions of faults in the context of a thin-plate system. In detail, the physical model allows separate treatments of faults with known geometry and slip history, faults with incomplete characterization (i.e. fault geometry but not necessarily slip history is available), creeping faults, and dislocation sources distributed between the faults. We model the western United States strain-rate field, derived from 746 GPS velocity vectors, in order to test the importance of the relaxation from historic events and characterize the tectonic forces imposed by the bounding Pacific and JdF plates. Relaxation following major earthquakes (M, 8.0) strongly shapes the present strain-rate field over most of the plate boundary zone. Equally important are lateral shear transmitted across the Pacific,North America plate boundary along ,1000 km of the continental shelf, downdip forces distributed along the Cascadia subduction interface, and distributed slip in the lower lithosphere. Post-earthquake relaxation and tectonic forcing, combined with distributed deep slip, constructively interfere near the western margin of the plate boundary zone, producing locally large strain accumulation along the San Andreas fault (SAF) system. However, they destructively interfere further into the plate interior, resulting in smaller and more variable strain accumulation patterns in the eastern part of the plate boundary zone. Much of the right-lateral strain accumulation along the SAF system is systematically underpredicted by models which account only for relaxation from known large earthquakes. This strongly suggests that in addition to viscoelastic-cycle effects, steady deep slip in the lower lithosphere is needed to explain the observed strain-rate field. [source] Short-term anti-plaque effect of two chlorhexidine varnishesJOURNAL OF CLINICAL PERIODONTOLOGY, Issue 8 2005Jan Cosyn Abstract Background: Chlorhexidine (CHX) varnishes have been mainly used for the prevention of caries in high-risk populations. Reports regarding their anti-plaque effect on a clinical level are limited to non-existing as opposed to their microbiological impact on plaque formation. Aim: The aim of this preliminary investigation was to evaluate the anti-plaque effect of two CHX varnishes applied on sound enamel in relation to a positive control, a negative control and to one another. Methods: Sixteen healthy subjects volunteered for this randomized-controlled, single-blind, four-treatment,four-period crossover-designed clinical trial. A 3-day plaque re-growth model was used to determine de novo plaque accumulation following CHX rinsing, Cervitec® application, EC40® application and no therapy. The amount of plaque was measured using the Quigley and Hein plaque index and "automatic image analysis" (AIA). Results and Conclusions: Varnish treatment resulted in significantly higher plaque levels than CHX rinsing irrespective of the varnish that was used (p0.002), implying that the latter is likely to remain the gold standard as an anti-plaque agent. However, highly significant differences were also found in favour of both varnish systems when compared with no therapy (p<0.001), which indicates that varnish treatment is an effective means of inhibiting plaque formation in a short time span. Cervitec® exhibited slightly, yet significantly, higher plaque levels in comparison with EC40® as determined by AIA (p=0.006). Large-scale trials with a longer observation period are necessary to substantiate these results. [source] Head structures of males of Strepsiptera (Hexapoda) with emphasis on basal splitting events within the orderJOURNAL OF MORPHOLOGY, Issue 5 2006Rolf Georg Beutel Abstract Internal and external head structures of males of Strepsiptera were examined and the head of a species of Mengenilla is described in detail. The results suggest a reinterpretation of some structures. The head of basal extant strepsipterans is subprognathous, whereas it is strictly orthognathous in the groundplan of Strepsiptera s.l. The labrum and hypopharynx are not part of the mouthfield sclerite. The labial palps are absent in all strepsipterans. A very slightly modified mandibular articulation is preserved in Eoxenos, whereas it is distinctly reduced in other extant groups. A salivary duct, salivary glands, and a cephalic aorta are absent. The cladistic analysis of 44 characters of the head results in the following branching pattern: (Protoxenos + (Mengea + (Eoxenos + (Mengenilla [Austr.] + Mengenilla) + (Elenchus + Dundoxenos + Xenos + Stylops)))). Most apomorphies of males are associated with the necessity of finding females within a short time span and with a reduced necessity to consume food: large "raspberry" eyes, flabellate antennae with numerous dome-shaped chemoreceptors, Hofeneder's organ, an ovoid sensillum of the maxillary palp, and the simplified condition of the maxilla and the labium. Strepsiptera excl. Protoxenos are supported by the dorsomedian frontal impression, the dorsally shifted antennal insertions, a reduced number of antennal segments, absence of the galea, and probably by the presence of the mouthfield sclerite, which is a unique apomorphic feature. The balloon-gut combined with an unusual air-uptake apparatus is another possible autapomorphy of this clade. It is likely that the last common ancestor of Strepsiptera excl. Protoxenos did not process food. Strepsiptera s.str. are characterized by the strongly reduced condition of the labrum and the absence of the epistomal suture. Eoxenos is the sister group of the remaining Strepsiptera s.str. Synapomorphies of Mengenilla + Stylopidia are the advanced reduction of the mandibular articulation and the secondary absence of the ovoid sensillum. The monophyly of Mengenilla is confirmed, even though a small free labrum is present in Australian species. Derived features of Stylopidia are the absence of the coronal suture and the reduced condition of the frontal suture. Apomorphies that have evolved within Stylopidia are the membranization of parts of the head, the fusion of antennal segments, the increase or decrease of the number of flabellate flagellomeres, reductions and modifications of the mandibles, and modifications of the mouthfield sclerite. The monophyly of Stylopiformia is not unambiguously supported. A position of the mandibles posterior to the mouthfield sclerite (when adducted) is a possible synapomorphy shared by Xenos, Stylops, and other "higher Stylopidia." The blade-like distal part of the mandibles suggests a closer relationship of Elenchus with these taxa. © 2004 Wiley-Liss, Inc. [source] |