Home About us Contact | |||
Short Tail (short + tail)
Selected AbstractsEvolution of the spermatozoon in muroid rodentsJOURNAL OF MORPHOLOGY, Issue 3 2005William G. Breed Abstract In the rodent superfamily Muroidea, a model for the evolution of sperm form has been proposed in which it is suggested that a hook-shaped sperm head and long tail evolved from a more simple, nonhooked head and short tail in several different subfamilies. To test this model the shape of the sperm head, with particular emphasis on its apical region, and length of sperm tail were matched to a recent phylogeny based on the nucleotide sequence of several protein-coding nuclear genes from 3 families and 10 subfamilies of muroid rodents. Data from the two other myomorph superfamilies, the Dipodoidea and kangaroo rats in the Geomyoidea, were used for an outgroup comparison. In most species in all 10 muroid subfamilies, apart from in the Murinae, the sperm head has a long rostral hook largely composed of acrosomal material, although its length and cross-sectional shape vary across the various subfamilies. Nevertheless, in a few species of various lineages a very different sperm morphology occurs in which an apical hook is lacking. In the outgroups the three species of dipodid rodents have a sperm head that lacks a hook, whereas in the heteromyids an acrosome-containing apical hook is present. It is concluded that, as the hook-shaped sperm head and long sperm tail occur across the muroid subfamilies, as well as in the heteromyid rodents, it is likely to be the ancestral condition within each of the subfamilies with the various forms of nonhooked sperm heads, that are sometimes associated with short tails, being highly derived states. These findings thus argue against a repeated evolution in various muroid lineages of a complex, hook-shaped sperm head and long sperm tail from a more simple, nonhooked sperm head and short tail. An alternative proposal for the evolution of sperm form within the Muroidea is presented in the light of these data. J. Morphol. © 2005 Wiley- Liss, Inc. [source] A study of inherited short tail and taillessness in Pembroke Welsh corgiJOURNAL OF SMALL ANIMAL PRACTICE, Issue 5 2008A. Indrebø Objectives: To study whether natural short tail in adult Pembroke Welsh corgi is associated with congenital spinal defects. To report anatomical defects in two newborn tailless puppies from short-tailed parents, and to check whether they were homozygous for the dominant mutation in the T-gene (C295G). Methods: The vertebral column of 19 adult dogs with natural short tail, from short-tail×long-tail crossings, was radiographically examined. Two tailless puppies were radiographed and submitted for necropsy. Samples from the puppies, their parents and five siblings were analysed for the mutation of the T-gene. Results: No congenital spinal defects were diagnosed in any of the short-tailed dogs. The tailless puppies had anorectal atresia, had multiple spinal defects and were homozygous for the mutation in the T-gene. Clinical Significance: As tail docking is forbidden in many countries, breeding Pembroke Welsh corgis with natural short tail is becoming increasingly common. Previous studies indicated that the mutation in homozygotes is lethal in early fetal life. It is of clinical significance that natural short tail is probably not associated with congenital spinal defects, as is known from studies of other species, and that homozygotes for this mutation with serious anatomical defects may be born. [source] Exceptionally preserved tadpoles from the Miocene of Libros, Spain: ecomorphological reconstruction and the impact of ontogeny upon taphonomyLETHAIA, Issue 3 2010MARIA E. MCNAMARA McNamara, M.E., Orr, P.J., Kearns, S.L., Alcalá, L., Anadón, P. & Peñalver-Mollá, E. 2010: Exceptionally preserved tadpoles from the Miocene of Libros, Spain: ecomorphological reconstruction and the impact of ontogeny upon taphonomy. Lethaia, Vol. 43, pp. 290,306. The Libros exceptional biota from the Upper Miocene of NE Spain includes abundant frog tadpoles (Rana pueyoi) preserved in finely laminated lacustrine mudstones. The tadpoles exhibit a depressed body, short tail, low tail fins, dorso-laterally directed eyes and jaw sheaths; these features identify the Libros tadpoles as members of the benthic lentic ecomorphological guild. This, the first ecomorphological reconstruction of a fossil tadpole, supports phylogenetic evidence that this ecology is a conserved ranid feature. The soft-tissue features of the Libros tadpoles are characterized by several modes of preservation. The space occupied previously by the brain is defined by calcium carbonate, the nerve cord is defined by calcium phosphate, and jaw sheaths and bone marrow are preserved as organic remains. Gut contents (and coprolites adjacent to specimens) comprise ingested fine-grained sedimentary detritus and epiphyton. The body outline and the eyespots, nares, abdominal cavity, notochord, caudal myotomes and fins are defined by a carbonaceous bacterial biofilm. A similar biofilm in adult specimens of R. pueyoi from Libros defines only the body outline, not any internal anatomical features. In the adult frogs, but not in the tadpoles, calcium phosphate and calcium sulphate precipitated in association with integumentary tissues. These differences in the mode of preservation between the adult frogs and tadpoles reflect ontogenetic factors. ,Anuran, ecology, soft-tissue, tadpoles, taphonomy. [source] A NEW BASAL LINEAGE OF EARLY CRETACEOUS BIRDS FROM CHINA AND ITS IMPLICATIONS ON THE EVOLUTION OF THE AVIAN TAILPALAEONTOLOGY, Issue 4 2008CHUNLING GAO Abstract:, We report on a new Early Cretaceous bird from China that sheds significant light on the evolutionary transition between primitive birds with a long bony tail and those with a short tail ending in a pygostyle. A cladistic analysis of basal birds supports the placement of the new fossil as the sister-taxon of all pygostylians. Possessing a unique hand morphology with a phalangeal formula of 2-3-3-x-x and a reduced number of caudal vertebrae lacking a pygostyle, the new specimen reveals anatomical information previously unknown and increases the taxonomic diversity of primitive, non-pygostylian birds. We infer from the specimen that during the evolution of the avian tail, a decrease in relative caudal length and number of vertebrae preceded the distal fusion of caudals into a pygostyle. [source] Intraspecific differences in benefits from feeding in mixed-species flocksJOURNAL OF AVIAN BIOLOGY, Issue 4 2000Teruaki Hino The Madagascar Paradise Flycatcher Terpsiphone mutata and Common Newtonia Newtonia brunneicauda frequently form two-species flocks in the deciduous dry forest of western Madagascar. In T. mutata, some males have long tails, while other males and females have short tails. When foraging in mixed flocks, each type of bird captured prey more rapidly than otherwise, but the degree of increase in feeding rate was smaller in long-tailed males. When in mixed flocks, all T. mutata caught prey on leaves in the canopy where N.brunneicauda foraged. Long-tailed males changed feeding habits from sallying when not in mixed flocks, whereas short-tailed birds showed no change of feeding habit. The elongated tails of long-tailed males may have made their foraging less efficient owing to decreased agility in the canopy. N. brunneicauda is monomorphic and often formed groups of three to five individuals. In monospecific flocks, subordinates fed at low rates on branches owing to frequent hostile encounters. When foraging in mixed flocks, however, subordinates foraged among leaves, and their feeding rates increased because the frequency of intraspecific interference decreased greatly. Dominants did not show any difference in feeding pattern with social situation. Thus, heterospecific flocking was more advantageous for subordinates. [source] Evolution of the spermatozoon in muroid rodentsJOURNAL OF MORPHOLOGY, Issue 3 2005William G. Breed Abstract In the rodent superfamily Muroidea, a model for the evolution of sperm form has been proposed in which it is suggested that a hook-shaped sperm head and long tail evolved from a more simple, nonhooked head and short tail in several different subfamilies. To test this model the shape of the sperm head, with particular emphasis on its apical region, and length of sperm tail were matched to a recent phylogeny based on the nucleotide sequence of several protein-coding nuclear genes from 3 families and 10 subfamilies of muroid rodents. Data from the two other myomorph superfamilies, the Dipodoidea and kangaroo rats in the Geomyoidea, were used for an outgroup comparison. In most species in all 10 muroid subfamilies, apart from in the Murinae, the sperm head has a long rostral hook largely composed of acrosomal material, although its length and cross-sectional shape vary across the various subfamilies. Nevertheless, in a few species of various lineages a very different sperm morphology occurs in which an apical hook is lacking. In the outgroups the three species of dipodid rodents have a sperm head that lacks a hook, whereas in the heteromyids an acrosome-containing apical hook is present. It is concluded that, as the hook-shaped sperm head and long sperm tail occur across the muroid subfamilies, as well as in the heteromyid rodents, it is likely to be the ancestral condition within each of the subfamilies with the various forms of nonhooked sperm heads, that are sometimes associated with short tails, being highly derived states. These findings thus argue against a repeated evolution in various muroid lineages of a complex, hook-shaped sperm head and long sperm tail from a more simple, nonhooked sperm head and short tail. An alternative proposal for the evolution of sperm form within the Muroidea is presented in the light of these data. J. Morphol. © 2005 Wiley- Liss, Inc. [source] Limb and tail lengths in relation to substrate usage in Tropidurus lizardsJOURNAL OF MORPHOLOGY, Issue 2 2001Tiana Kohlsdorf Abstract A close relationship between morphology and habitat is well documented for anoline lizards. To test the generality of this relationship in lizards, snout-vent, tail, and limb lengths of 18 species of Tropidurus (Tropiduridae) were measured and comparisons made between body proportions and substrate usage. Phylogenetic analysis of covariance by computer simulation suggests that the three species inhabiting sandy soils have relatively longer feet than do other species. Phylogenetic ANCOVA also demonstrates that the three species inhabiting tree canopies and locomoting on small branches have short tails and hind limbs. These three species constitute a single subclade within the overall Tropidurus phylogeny and analyses with independent contrasts indicate that divergence in relative tail and hind limb length has been rapid since they split from their sister clade. Being restricted to a single subclade, the difference in body proportions could logically be interpreted as either an adaptation to the clade's lifestyle or simply a nonadaptive synapomorphy for this lineage. Nevertheless, previous comparative studies of another clade of lizards (Anolis) as well as experimental studies of Sceloporus lizards sprinting on rods of different diameters support the adaptive interpretation. J. Morphol. 248:151,164, 2001. © 2001 Wiley-Liss, Inc. [source] |