Short QT Interval (short + qt_interval)

Distribution by Scientific Domains


Selected Abstracts


Short QT Interval: A Novel Predictor of Androgen Abuse in Strength Trained Athletes

ANNALS OF NONINVASIVE ELECTROCARDIOLOGY, Issue 1 2009
Mohammad Ali Babaee Bigi M.D.
Objectives: To find the relationship between anabolic androgenic steroids (AAS) using and QT interval in athletes. Methods: Between January 1, 2005 and May 31, 2007, we examined QTc interval duration in 165 consecutive male professional bodybuilders [age: 32.1 ± 4.6 years]. Of these, 79 were AAS users. The control group included 90 sedentary age and gender matched subjects [none of them were AAS users]. Results: The QTc interval of AAS abusing bodybuilders was significantly shorter compared with QTc interval in AAS-free bodybuilders and control group. Short QTc interval (,380 ms) was an independent predictor of AAS abusing in the multivariate analysis. Conclusions: To the best of our knowledge, there is no published report regarding electrocardiographic diagnosis and screening of AAS abusing athletes. In the present study, we present an easy and applicable method to screen and diagnose AAS abusing among professional bodybuilders. In the presence of QTc interval , 380 ms in a bodybuilder, one would predict AAS abusing with 83% sensitivity and 88% specificity. [source]


Congenital Short QT Syndrome and Implantable Cardioverter Defibrillator Treatment:

JOURNAL OF CARDIOVASCULAR ELECTROPHYSIOLOGY, Issue 12 2003
Inherent Risk for Inappropriate Shock Delivery
Introduction: A congenital short QT interval constitutes a new primary electrical abnormality associated with syncope and/or sudden cardiac death. We report on the initial use of implantable cardioverter defibrillator (ICD) therapy in patients with inherited short QT interval and discuss sensing abnormalities and detection issues. Methods and Results: In five consecutive patients from two unrelated European families who had structurally normal hearts, excessively shortened QT intervals, and a strong positive family history of sudden cardiac death, ICDs were placed for primary and secondary prevention. Mean QT intervals were 252 ± 13 ms (QTc 287 ± 13 ms). Despite normal sensing behavior during intraoperative and postoperative device testing, 3 of 5 patients experienced inappropriate shock therapies for T wave oversensing 30 ± 26 days after implantation. Programming lower sensitivities and decay delays prevented further inappropriate discharges. Conclusion: The congenital short QT syndrome constitutes a new clinical entity with an increased risk for sudden cardiac death. Currently, ICD treatment is the only therapeutic option. In patients with short QT interval and implanted ICD, increased risk for inappropriate therapy is inherent due to the detection of short-coupled and prominent T waves. Careful testing of ICD function and adaptation of sensing levels and decay delays without sacrificing correct arrhythmia detection are essential. (J Cardiovasc Electrophysiol, Vol. 14, pp. 1273-1277, December 2003) [source]


T-Wave Morphology in Short QT Syndrome

ANNALS OF NONINVASIVE ELECTROCARDIOLOGY, Issue 3 2009
Olli Anttonen M.D.
Background: Short QT syndrome (SQTS) is an inherited disorder characterized by a short QT interval and vulnerability to ventricular tachyarrhythmias. The diagnostic criteria for this syndrome are not well defined, since there is uncertainty about the lowest normal limits for the corrected QT (QTc) interval. Objective: The aim of this study was to determine whether T-wave morphology parameters are abnormal in short QT subjects and whether those parameters can help in the diagnosis of SQTS. Methods and Results: We describe three families (10 patients) with short QT intervals (QTc 310 ± 32 ms). Seven subjects had suffered serious arrhythmic events and three were asymptomatic. T-wave morphology was assessed using the principal component analysis (PCA). QTc was significantly shorter and T-wave amplitude in lead V2 higher in the short QT subjects compared to healthy controls (n = 149), (P < 0.001 for both). The total cosine of the angle between the main vectors of the QRS and T-wave loops (TCRT) was markedly abnormal among the symptomatic patients with short QT syndrome (n = 7) (TCRT ,0.14 ± 0.55 vs 0.36 ± 0.51, P = 0.019). None of the three asymptomatic patients with short QT but without a history of arrhythmic events had an abnormally low TCRT. Conclusion: Our observations suggest that patients with a short QT interval and a history of arrhythmic events have abnormal T-wave loop parameters. These electrocardiogram (ECG) features may help in the diagnosis of SQTS in addition to the measurement of the duration of QT interval from the 12-lead ECG. [source]


Electrocardiographic Transmural Dispersion of Repolarization in Patients with Inherited Short QT Syndrome

ANNALS OF NONINVASIVE ELECTROCARDIOLOGY, Issue 3 2008
Olli Anttonen M.D.
Background: Short QT syndrome (SQTS) carries an increased risk for sudden cardiac death. However, only a short QT interval does not express the risk of ventricular arrhythmias. Thus, additional evaluation of the repolarization abnormality in SQTS patients is essential. In experimental models of SQTS, increased transmural dispersion of repolarization (TDR) and its electrocardiographic counterpart T-wave peak to T-wave end interval (TPE) appeared critical for induction of polymorphic ventricular tachycardia (PMVT). In a clinical study with acquired long QT syndrome patients, TPE/QT ratio > 0.28 indicated arrhythmia risk. We hypothesized that the TPE/QT ratio would be greater in SQTS patients than in control subjects. Methods and Results: We compared the behavior of the electrocardiographic TDR in three seriously symptomatic SQTS patients of unknown genotype presenting baseline QTc values <320 ms and in nine healthy age-matched control subjects. We determined QT and TPE intervals as well as TPE/QT ratio from 24-hour ECG recordings using a computer-assisted program. Diurnal average of TPE/QT ratio was 0.28 ± 0.03 in SQTS patients and 0.21 ± 0.02 in control subjects (P = 0.01). SQTS patients had also lesser capacity to change TPE intervals from steady-state conditions to abrupt maximal values than control subjects. Conclusion: SQTS patients have increased and autonomically uncontrolled electrocardiographic TDR. According to experimental SQTS models, the present results may in part explain increased vulnerability of SQTS patients to ventricular arrhythmias. [source]


T-Wave Morphology in Short QT Syndrome

ANNALS OF NONINVASIVE ELECTROCARDIOLOGY, Issue 3 2009
Olli Anttonen M.D.
Background: Short QT syndrome (SQTS) is an inherited disorder characterized by a short QT interval and vulnerability to ventricular tachyarrhythmias. The diagnostic criteria for this syndrome are not well defined, since there is uncertainty about the lowest normal limits for the corrected QT (QTc) interval. Objective: The aim of this study was to determine whether T-wave morphology parameters are abnormal in short QT subjects and whether those parameters can help in the diagnosis of SQTS. Methods and Results: We describe three families (10 patients) with short QT intervals (QTc 310 ± 32 ms). Seven subjects had suffered serious arrhythmic events and three were asymptomatic. T-wave morphology was assessed using the principal component analysis (PCA). QTc was significantly shorter and T-wave amplitude in lead V2 higher in the short QT subjects compared to healthy controls (n = 149), (P < 0.001 for both). The total cosine of the angle between the main vectors of the QRS and T-wave loops (TCRT) was markedly abnormal among the symptomatic patients with short QT syndrome (n = 7) (TCRT ,0.14 ± 0.55 vs 0.36 ± 0.51, P = 0.019). None of the three asymptomatic patients with short QT but without a history of arrhythmic events had an abnormally low TCRT. Conclusion: Our observations suggest that patients with a short QT interval and a history of arrhythmic events have abnormal T-wave loop parameters. These electrocardiogram (ECG) features may help in the diagnosis of SQTS in addition to the measurement of the duration of QT interval from the 12-lead ECG. [source]