Shoulder Region (shoulder + region)

Distribution by Scientific Domains


Selected Abstracts


On functional motor adaptations: from the quantification of motor strategies to the prevention of musculoskeletal disorders in the neck,shoulder region

ACTA PHYSIOLOGICA, Issue 2010
P. Madeleine
Abstract Background:, Occupations characterized by a static low load and by repetitive actions show a high prevalence of work-related musculoskeletal disorders (WMSD) in the neck,shoulder region. Moreover, muscle fatigue and discomfort are reported to play a relevant initiating role in WMSD. Aims: To investigate relationships between altered sensory information, i.e. localized muscle fatigue, discomfort and pain and their associations to changes in motor control patterns. Materials & Methods:, In total 101 subjects participated. Questionnaires, subjective assessments of perceived exertion and pain intensity as well as surface electromyography (SEMG), mechanomyography (MMG), force and kinematics recordings were performed. Results:, Multi-channel SEMG and MMG revealed that the degree of heterogeneity of the trapezius muscle activation increased with fatigue. Further, the spatial organization of trapezius muscle activity changed in a dynamic manner during sustained contraction with acute experimental pain. A graduation of the motor changes in relation to the pain stage (acute, subchronic and chronic) and work experience were also found. The duration of the work task was shorter in presence of acute and chronic pain. Acute pain resulted in decreased activity of the painful muscle while in subchronic and chronic pain, a more static muscle activation was found. Posture and movement changed in the presence of neck,shoulder pain. Larger and smaller sizes of arm and trunk movement variability were respectively found in acute pain and subchronic/chronic pain. The size and structure of kinematics variability decreased also in the region of discomfort. Motor variability was higher in workers with high experience. Moreover, the pattern of activation of the upper trapezius muscle changed when receiving SEMG/MMG biofeedback during computer work. Discussion:, SEMG and MMG changes underlie functional mechanisms for the maintenance of force during fatiguing contraction and acute pain that may lead to the widespread pain seen in WMSD. A lack of harmonious muscle recruitment/derecruitment may play a role in pain transition. Motor behavior changed in shoulder pain conditions underlining that motor variability may play a role in the WMSD development as corroborated by the changes in kinematics variability seen with discomfort. This prognostic hypothesis was further, supported by the increased motor variability among workers with high experience. Conclusion:, Quantitative assessments of the functional motor adaptations can be a way to benchmark the pain status and help to indentify signs indicating WMSD development. Motor variability is an important characteristic in ergonomic situations. Future studies will investigate the potential benefit of inducing motor variability in occupational settings. [source]


Imaging of the shoulder

EQUINE VETERINARY EDUCATION, Issue 4 2010
W. R. Redding
Summary Diagnosis of lameness associated with the shoulder region requires a careful clinical examination, the use of specifically placed intra-articular analgesia and a combination of some common imaging techniques to accurately define the source of pain. Most equine practices performing lameness examinations in the horse have the radiographic and ultrasonographic equipment necessary to accurately image the shoulder. This article presents a description of the unique anatomy of the shoulder and the specific application of radiographic and ultrasonographic techniques to provide a complete set of diagnostic images of the shoulder region. A brief discussion of nuclear scintigraphy of this region is also included. [source]


Acupuncture treatment for sedentary female workers with chronic pain in the neck and shoulder region

FOCUS ON ALTERNATIVE AND COMPLEMENTARY THERAPIES AN EVIDENCE-BASED APPROACH, Issue 4 2003
D He
[source]


Effect of long-term natural aging on the thermal, mechanical, and viscoelastic behavior of biomedical grade of ultra high molecular weight polyethylene

JOURNAL OF APPLIED POLYMER SCIENCE, Issue 1 2010
H. Fouad
Abstract In the total joint prostheses, Ultra High Molecular Weight Polyethylene (UHMWPE) may undergo an oxidative degradation in the long term. The overall properties of UHMWPE are expected to be altered due to the oxidative degradation. The goal of this study is to investigate the effects of natural aging up to 6 years in air on the thermal, mechanical, and viscoelastic properties of UHMWPE that was used in total joint replacement. The changes in UHMWPE properties due to aging are determined using Differential Scanning Calorimetry (DSC), uniaxial tensile tests, and Dynamic Mechanical Analysis (DMA). The DSC results show that the lamellar thickness and degree of crystallinity of UHMWPE specimens increase by 38% and 12% due to aging. A small shoulder region in the DSC thermograms is remarked for aged specimens, which is an indication of formation of new crystalline forms within their amorphous region. The tensile properties of aged and nonaged UHMWPE specimens show a significant decrease in the elastic modulus, yield, fracture stresses, and strain at break due to aging. The DM testing results indicate that the storage modulus and creep resistance of UHMWPE specimens decrease significantly due to aging. Also, it is remarked that the , relaxation peak for aged UHMWPE specimens occurs at lower temperature compared to nonaged ones. The significant reduction in the strength and creep resistance of UHMWPE specimens due to aging would affect the long-term clinical performance of the total joint replacement and should be taken into consideration during artificial joint design. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010 [source]