Shallow Ground Water (shallow + ground_water)

Distribution by Scientific Domains


Selected Abstracts


ARSENIC IN THE SHALLOW GROUND WATERS OF CONTERMINOUS UNITED STATES: ASSESSMENT, HEALTH RISKS, AND COSTS FOR MCL COMPLIANCE,

JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, Issue 2 2006
Navin Kumar C. Twarakavi
ABSTRACT: A methodology consisting of ordinal logistic regression (OLR) is used to predict the probability of occurrence of arsenic concentrations in different threshold limits in shallow ground waters of the conterminous United States (CONUS) subject to a set of influencing variables. The analysis considered a number of maximum contaminant level (MCL) options as threshold values to estimate the probabilities of occurrence of arsenic in ranges defined by a given MCL of 3, 5, 10, 20, and 50 ,g/l and a detection limit of 1 ,g/l. The fit between the observed and predicted probability of occurrence was around 83 percent for all MCL options. The estimated probabilities were used to estimate the median background concentration of arsenic in the CONUS. The shallow ground water of the western United States is more vulnerable than the eastern United States. Arizona, Utah, Nevada, and California in particular are hotspots for arsenic contamination. The risk assessment showed that counties in southern California, Arizona, Florida, and Washington and a few others scattered throughout the CONUS face a high risk from arsenic exposure through untreated ground water consumption. A simple cost effectiveness analysis was performed to understand the household costs for MCL compliance in using arsenic contaminated ground water. The results showed that the current MCL of 10 ,g/l is a good compromise based on existing treatment technologies. [source]


Controls on Ground Water Chemistry in the Central Couloir Sud Rifain, Morocco

GROUND WATER, Issue 2 2010
Lahcen Benaabidate
Irrigation, urbanization, and drought pose challenges for the sustainable use of ground water in the central Couloir sud rifain, a major agricultural region in north-central Morocco, which includes the cities of Fès and Meknès. The central Couloir is underlain by unconfined and confined carbonate aquifers that have suffered declines in hydraulic head and reductions in spring flow in recent decades. Previous studies have surveyed ground water flow and water quality in wells and springs but have not comprehensively addressed the chemistry of the regional aquifer system. Using graphical techniques and saturation index calculations, we infer that major ion chemistry is controlled (1) in the surficial aquifer by cation exchange, calcite dissolution, mixing with deep ground water, and possibly calcite precipitation and (2) in the confined aquifer and warm springs by calcite dissolution, dolomite dissolution, mixing with water that has dissolved gypsum and halite, and calcite precipitation. Analyses of 2H and 18O indicate that shallow ground water is affected by evaporation during recharge (either of infiltrating precipitation or return flow), whereas deep ground water is sustained by meteoric recharge with little evaporation. Mechanisms of recharge and hydrochemical evolution are broadly consistent with those delineated for similar regional aquifer systems elsewhere in Morocco and in southern Spain. [source]


Estimating Background and Threshold Nitrate Concentrations Using Probability Graphs

GROUND WATER, Issue 5 2006
S.V. Panno
Because of the ubiquitous nature of anthropogenic nitrate () in many parts of the world, determining background concentrations of in shallow ground water from natural sources is probably impossible in most environments. Present-day background must now include diffuse sources of such as disruption of soils and oxidation of organic matter, and atmospheric inputs from products of combustion and evaporation of ammonia from fertilizer and livestock waste. Anomalies can be defined as derived from nitrogen (N) inputs to the environment from anthropogenic activities, including synthetic fertilizers, livestock waste, and septic effluent. Cumulative probability graphs were used to identify threshold concentrations separating background and anomalous NO3 -N concentrations and to assist in the determination of sources of N contamination for 232 spring water samples and 200 well water samples from karst aquifers. Thresholds were 0.4, 2.5, and 6.7 mg/L for spring water samples, and 0.1, 2.1, and 17 mg/L for well water samples. The 0.4 and 0.1 mg/L values are assumed to represent thresholds for present-day precipitation. Thresholds at 2.5 and 2.1 mg/L are interpreted to represent present-day background concentrations of NO3 -N. The population of spring water samples with concentrations between 2.5 and 6.7 mg/L represents an amalgam of all sources of in the ground water basins that feed each spring; concentrations >6.7 mg/L were typically samples collected soon after springtime application of synthetic fertilizer. The 17 mg/L threshold (adjusted to 15 mg/L) for well water samples is interpreted as the level above which livestock wastes dominate the N sources. [source]


Variability and Comparison of Hyporheic Water Temperatures and Seepage Fluxes in a Small Atlantic Salmon Stream,

GROUND WATER, Issue 1 2003
Matthew D. Alexander
Ground water discharge is often a significant factor in the quality of fish spawning and rearing habitat and for highly biologically productive streams. In the present study, water temperatures (stream and hyporheic) and seepage fluxes were used to characterize shallow ground water discharge and recharge within the streambed of Catamaran Brook, a small Atlantic salmon (Salmo salar) stream in central New Brunswick, Canada. Three study sites were instrumented using a total of 10 temperature sensors and 18 seepage meters. Highly variable mean seepage fluxes, ranging from 1.7 × 10,4 to 2.5 cm3 m,2 sec,1, and mean hyporheic water temperatures, ranging from 10.5° to 18.0°C, at depths of 20 to 30 cm in the streambed were dependent on streambed location (left versus right stream bank and site location) and time during the summer sampling season. Temperature data were useful for determining if an area of the streambed was under discharge (positive flux), recharge (negative flux), or parallel flow (no flux) conditions and seepage meters were used to directly measure the quantity of water flux. Hyporheic water temperature measurements and specific conductance measurements of the seepage meter sample water, mean values ranging from 68.8 to 157.9 ,S/cm, provided additional data for determining flux sources. Three stream banks were consistently under discharge conditions, while the other three stream banks showed reversal from discharge to recharge conditions over the sampling season. Results indicate that the majority of the water collected in the seepage meters was composed of surface water. The data obtained suggests that even though a positive seepage flux is often interpreted as ground water discharge, this discharging water may be of stream water origin that has recently entered the hyporheic zone. The measurement of seepage flux in conjunction with hyporheic water temperature or other indicators of water origin should be considered when attempting to quantify the magnitude of exchange and the source of hyporheic water. [source]


Pesticides in Ground Water of the United States, 1992,1996

GROUND WATER, Issue 6 2000
Dana W. Kolpin
During the first cycle of the National Water Quality Assessment (1992,1996), ground water in 20 of the nation's major hydro-logic basins was analyzed for 90 pesticide compounds (pesticides and degradates). One or more of the pesticide compounds examined were detected at 48.4% of the 2485 ground water sites sampled. However, approximately 70% of the sites where pesticides were detected, two or more pesticide compounds analyzed were present,documenting the prevalence of pesticide mixtures in ground water. The pesticide concentrations encountered were generally low, with the median total concentration (summation of concentrations for the 90 pesticide compounds) being 0.046 ,g/L. Pesticides were commonly detected in shallow ground water beneath both agricultural (60.4%) and urban (48.5%) areas. This is an important finding because, although agricultural activities have long been associated with pesticide contamination, urban areas have only recently been recognized as a potential source of these types of compounds. Pesticides with higher frequencies of detection were generally those with more extensive use, greater environmental persistence, and greater mobility in ground water (lower soil-water partition coefficients). [source]


Water Resource Implications of 18O and 2H Distributions in a Basalt Aquifer System

GROUND WATER, Issue 6 2000
Kathryn R. Larson
Ongoing decline of water levels in the confined basalt aquifers of the Pullman-Moscow Basin of Washington and Idaho has prompted study of the timing, amount and distribution of recharge to the system. Previous radiocarbon ages indicate residence times on the order of 103 years and greater and suggest a low rate of recharge to the lower basalt aquifer since the end of Pleistocene time. By contrast, more recent hydrodynamic flow modeling studies invoke a larger Holocene recharge rate through the unconfined loess unit to the upper and lower basalt aquifers, which implies relatively short residence times (102 years). Stable isotopes were used to independently assess contrasting recharge models by comparing 18O/16O and D/H ratios of late-Holocene shallow ground water and deep ground water. Linear regression of local precipitation ratios yields ,D = 6.9 ,18O ,18.5. There is no evidence of fractionation of ground water ratios by recharge processes or water-rock interactions. Deep basalt ground water ,18O values are depleted by 0.4 to 4.9 per mil relative to shallow, recently recharged ground waters and have ,18O values statistically distinct from waters sampled from other stratigraphic units. These findings suggest that the deep waters in the basin were not precipitated under current climate conditions and that aquifer recharge rates to the deep basalt aquifer are substantially lower than have been recently estimated. This in turn suggests that a sustainable ground water exploitation scheme must reduce reliance on the deep ground water resource. [source]


Spatial analysis of instream nitrogen loads and factors controlling nitrogen delivery to streams in the southeastern United States using spatially referenced regression on watershed attributes (SPARROW) and regional classification frameworks,

HYDROLOGICAL PROCESSES, Issue 16 2009
Anne B. Hoos
Abstract Understanding how nitrogen transport across the landscape varies with landscape characteristics is important for developing sound nitrogen management policies. We used a spatially referenced regression analysis (SPARROW) to examine landscape characteristics influencing delivery of nitrogen from sources in a watershed to stream channels. Modelled landscape delivery ratio varies widely (by a factor of 4) among watersheds in the southeastern United States,higher in the western part (Tennessee, Alabama, and Mississippi) than in the eastern part, and the average value for the region is lower compared to other parts of the nation. When we model landscape delivery ratio as a continuous function of local-scale landscape characteristics, we estimate a spatial pattern that varies as a function of soil and climate characteristics but exhibits spatial structure in residuals (observed load minus predicted load). The spatial pattern of modelled landscape delivery ratio and the spatial pattern of residuals coincide spatially with Level III ecoregions and also with hydrologic landscape regions. Subsequent incorporation into the model of these frameworks as regional scale variables improves estimation of landscape delivery ratio, evidenced by reduced spatial bias in residuals, and suggests that cross-scale processes affect nitrogen attenuation on the landscape. The model-fitted coefficient values are logically consistent with the hypothesis that broad-scale classifications of hydrologic response help to explain differential rates of nitrogen attenuation, controlling for local-scale landscape characteristics. Negative model coefficients for hydrologic landscape regions where the primary flow path is shallow ground water suggest that a lower fraction of nitrogen mass will be delivered to streams; this relation is reversed for regions where the primary flow path is overland flow. Published in 2009 by John Wiley & Sons, Ltd. [source]


MODELING METALS TRANSPORT AND SEDIMENT/WATER INTERACTIONS IN A MINING IMPACTED MOUNTAIN STREAM,

JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, Issue 6 2004
Brian S. Caruso
ABSTRACT: The U.S. Environmental Protection Agency (USEPA) Water Quality Analysis Simulation Program (WASP5) was used to model the transport and sediment/water interactions of metals under low flow, steady state conditions in Tenmile Creek, a mountain stream supplying drinking water to the City of Helena, Montana, impacted by numerous abandoned hard rock mines. The model was calibrated for base flow using data collected by USEPA and validated using data from the U.S. Geological Survey (USGS) for higher flows. It was used to assess metals loadings and losses, exceedances of Montana State water quality standards, metals interactions in stream water and bed sediment, uncertainty in fate and transport processes and model parameters, and effectiveness of remedial alternatives that include leaving contaminated sediment in the stream. Results indicated that during base flow, adits and point sources contribute significant metals loadings to the stream, but that shallow ground water and bed sediment also contribute metals in some key locations. Losses from the water column occur in some areas, primarily due to adsorption and precipitation onto bed sediments. Some uncertainty exists in the metal partition coefficients associated with sediment, significance of precipitation reactions, and in the specific locations of unidentified sources and losses of metals. Standards exceedances are widespread throughout the stream, but the model showed that remediation of point sources and mine waste near water courses can help improve water quality. Model results also indicate, however, that alteration of the water supply scheme and increasing base flow will probably be required to meet all water quality standards. [source]


ARSENIC IN THE SHALLOW GROUND WATERS OF CONTERMINOUS UNITED STATES: ASSESSMENT, HEALTH RISKS, AND COSTS FOR MCL COMPLIANCE,

JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, Issue 2 2006
Navin Kumar C. Twarakavi
ABSTRACT: A methodology consisting of ordinal logistic regression (OLR) is used to predict the probability of occurrence of arsenic concentrations in different threshold limits in shallow ground waters of the conterminous United States (CONUS) subject to a set of influencing variables. The analysis considered a number of maximum contaminant level (MCL) options as threshold values to estimate the probabilities of occurrence of arsenic in ranges defined by a given MCL of 3, 5, 10, 20, and 50 ,g/l and a detection limit of 1 ,g/l. The fit between the observed and predicted probability of occurrence was around 83 percent for all MCL options. The estimated probabilities were used to estimate the median background concentration of arsenic in the CONUS. The shallow ground water of the western United States is more vulnerable than the eastern United States. Arizona, Utah, Nevada, and California in particular are hotspots for arsenic contamination. The risk assessment showed that counties in southern California, Arizona, Florida, and Washington and a few others scattered throughout the CONUS face a high risk from arsenic exposure through untreated ground water consumption. A simple cost effectiveness analysis was performed to understand the household costs for MCL compliance in using arsenic contaminated ground water. The results showed that the current MCL of 10 ,g/l is a good compromise based on existing treatment technologies. [source]