Home About us Contact | |||
Shade Coffee Plantations (shade + coffee_plantation)
Selected AbstractsEffects of Shade-Tree Species and Crop Structure on the Winter Arthropod and Bird Communities in a Jamaican Shade Coffee Plantation,BIOTROPICA, Issue 1 2000Matthew D. Johnson ABSTRACT I examined the effects of two farm management variables, shade-tree species and crop structure, on the winter (dry season) arthropod and bird communities in a Jamaican shade coffee plantation. Birds and canopy arthropods were more abundant in areas of the plantation shaded by the tree Inga vera than by Pseudalbizia berteroana. The abundance of arthropods (potential pests) on the coffee crop, however, was unaffected by shade-tree species. Canopy arthropods, particularly psyllids (Homoptera), were especially abundant on Inga in late winter, when it was producing new leaves and nectar-rich flowers. Insectivorous and nectarivorous birds showed the strongest response to Inga; thus the concentration of birds in Inga may be a response to abundant food. Coffee-tree arthropod abundance was much lower than in the shade trees and was affected little by farm management variables, although arthropods tended to be more abundant in dense (unpruned) than open (recently pruned) areas of the plantation. Perhaps in response, leaf-gleaning insectivorous birds were more abundant in dense areas. These results underscore that although some shade coffee plantations may provide habitat for arthropod and bird communities, differences in farm management practices can significantly affect their abundances. Furthermore, this study provides evidence suggesting that bird communities in coffee respond to spatial variation in arthropod availability. I conclude that /. vera is a better shade tree than P. berteroana, but a choice in crop structures is less clear due to changing effects of prune management over time. [source] Use of Premontane Moist Forest and Shade Coffee Agroecosystems by Army Ants in Western PanamaCONSERVATION BIOLOGY, Issue 1 2000Dina L. Roberts Behavioral and distributional studies of these two species have been confined largely to humid lowland forest. We conducted intensive systematic area searches at elevations between 1200 and 1800 m in western Panama to assess the distribution of both species in intact premontane moist forest, shade coffee plantations, and sun coffee plantations. Both species were repeatedly observed in forest, shade coffee plantations close to forest, and shade coffee plantations distant from forest. Neither species was observed in sun coffee plantations. We believe that retention of certain forest-like characteristics in the traditional shade coffee farm contributes to the persistence of these forest organisms in modified landscapes. Large canopy trees not only provide shade that buffers temperature extremes but also supply the ground layer with regular inputs of leaf litter and coarse woody debris from fallen trunks. Both E. burchelli and L. praedator hunt in leaf litter, and E. burchelli uses coarse woody debris as nesting sites ( bivouacs). There were significantly fewer potential bivouacs available in sun coffee plantations than in forest and shade coffee habitats. Also, litter depth was less in sun coffee than in forest and shade coffee. Our results provide the first evidence that shade coffee plantations can provide additional habitat for E. burchelli and L. praedator, top predators of the leaf litter arthropod community. E. burchelli and L. praedator act as critical links between swarm-attendant bird species and leaf-litter arthropods, providing an easily exploited food resource that would otherwise be unavailable for many birds. Continued conversion of shade coffee plantations to sun coffee plantations could have negative effects on army ants and associated biodiversity. Resumen: Las hormigas arrierras Neotropicales, Eciton burchelli y Labidus praedator ( Hymenoptera: Formicidae: Ecitoninae) son especies que requieren de extensas áreas de hábitat para cazar. Los estudios conductuales y de la distribución de estas especies se han realizado principalmente en bosques húmedos en tierras bajas. Desarrollamos búsquedas sistemáticas intensivas en elevaciones entre 1200 y 1800 msnm en Panama occidental para determinar la distribución de ambas especies en bosque húmedo premontano intacto, en plantaciones de café con y sin sombra. Las dos especies fueron observadas recurrentemente en bosque y en plantaciones de café de sombra cercanos y lejanos al bosque. Consideramos que la retención de ciertas características del bosque en las plantaciones de café de sombra contribuye a la persistencia de estos organismos de bosque en ambientes modificados. Los árboles no solo proporcionan sombra que amortigua la temperatura, sino que proporcionan hojarasca y restos leñosos de troncos caídos. Tanto E. burchelli como L. praedator cazan en la hojarasca, E. burchelli utiliza restos leñosos para anidar (vivaques). Encontramos significativamente menos vivaques en plantaciones de café sin sombra al compararlos con bosque y plantaciones de café con sombra. Asimismo, la profundidad de la capa de hojarasca fue menor en plantaciones de café sin sombra en comparación con bosque y plantaciones de café con sombra. Nuestros resultados proporcionan la primera evidencia de que las plantaciones con sombra proporcionan hábitat adicional para E. burchelli y L. praedator, depredadores de la comunidad de artrópodos en la hojarasca. E. burchelli y L. praedator actúan como eslabones críticos entre especies de aves que se alimentan de hormigas y los artrópodos de la hojarasca, proporcionando un recurso alimenticio fácilmente explotado que de otra manera no estaría disponible para muchas aves. La continua transformación de plantaciones de café con sombra a plantaciones sin sombra pudiera tener efectos negativos sobre las hormigas arrieras y la biodiversidad asociada. [source] Effects of Shade-Tree Species and Crop Structure on the Winter Arthropod and Bird Communities in a Jamaican Shade Coffee Plantation,BIOTROPICA, Issue 1 2000Matthew D. Johnson ABSTRACT I examined the effects of two farm management variables, shade-tree species and crop structure, on the winter (dry season) arthropod and bird communities in a Jamaican shade coffee plantation. Birds and canopy arthropods were more abundant in areas of the plantation shaded by the tree Inga vera than by Pseudalbizia berteroana. The abundance of arthropods (potential pests) on the coffee crop, however, was unaffected by shade-tree species. Canopy arthropods, particularly psyllids (Homoptera), were especially abundant on Inga in late winter, when it was producing new leaves and nectar-rich flowers. Insectivorous and nectarivorous birds showed the strongest response to Inga; thus the concentration of birds in Inga may be a response to abundant food. Coffee-tree arthropod abundance was much lower than in the shade trees and was affected little by farm management variables, although arthropods tended to be more abundant in dense (unpruned) than open (recently pruned) areas of the plantation. Perhaps in response, leaf-gleaning insectivorous birds were more abundant in dense areas. These results underscore that although some shade coffee plantations may provide habitat for arthropod and bird communities, differences in farm management practices can significantly affect their abundances. Furthermore, this study provides evidence suggesting that bird communities in coffee respond to spatial variation in arthropod availability. I conclude that /. vera is a better shade tree than P. berteroana, but a choice in crop structures is less clear due to changing effects of prune management over time. [source] |