Shell Subregion (shell + subregion)

Distribution by Scientific Domains


Selected Abstracts


Contrasting effects of selective lesions of nucleus accumbens core or shell on inhibitory control and amphetamine-induced impulsive behaviour

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 2 2008
E. R. Murphy
Abstract The core and shell subregions of the nucleus accumbens receive differential projections from areas of the medial prefrontal cortex that have dissociable effects on impulsive and perseverative responding. The contributions of these subregions to simple instrumental behaviour, inhibitory control and behavioural flexibility were investigated using a ,forced choice' task, various parameter manipulations and an omission schedule version of the task. Post-training, selective core lesions were achieved with microinjections of quinolinic acid and shell lesions with ibotenic acid. After a series of behavioural task manipulations, rats were re-stabilized on the standard version of the task and challenged with increasing doses of d - amphetamine (vehicle, 0.5 or 1.0 mg/kg i.p. 30 min prior to test). Neither core- nor shell-lesioned rats exhibited persistent deficits in simple instrumental behaviour or challenges to behavioural flexibility or inhibitory control. Significant differences between lesion groups were unmasked by d- amphetamine challenge in the standard version of the forced task. Core lesions potentiated and shell lesions attenuated the dose-dependent effect of d- amphetamine on increasing anticipatory responses seen in sham rats. These data imply that the accumbens core and shell subregions do not play major roles in highly-trained task performance or in challenges to behavioural control, but may have opposed effects following d- amphetamine treatment. Specifically, they suggest the shell subregion to be necessary for dopaminergic activation driving amphetamine-induced impulsive behaviour and the core subregion for the normal control of this behaviour via conditioned influences. [source]


Stimulation of D1-like or D2 dopamine receptors in the shell, but not the core, of the nucleus accumbens reinstates cocaine-seeking behaviour in the rat

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 1 2006
Heath D. Schmidt
Abstract Although increases in dopamine transmission in the brain are clearly involved in the reinstatement of cocaine seeking, the role of nucleus accumbens dopamine in cocaine priming-induced reinstatement remains controversial. The goal of these experiments was to evaluate the relative contributions of D1-like and D2-like dopamine receptors in the nucleus accumbens core and shell in the reinstatement of cocaine-seeking behaviour. Initially, rats were trained to press a lever for cocaine (0.25 mg, i.v.) using a fixed-ratio 5 (FR5) schedule of reinforcement. Responding was then extinguished by substituting saline for cocaine. During the reinstatement phase, subtype-specific dopamine receptor agonists were microinjected into the nucleus accumbens core or medial shell in order to assess their ability to induce cocaine seeking. Administration of the D1/D5 dopamine receptor agonist SKF-81297 (1.0 µg) into the nucleus accumbens shell, but not core, reinstated drug-seeking behaviour. Similarly, microinjection of quinpirole (3.0 µg), a D2/D3 dopamine receptor agonist, into the nucleus accumbens shell and not core reinstated drug-seeking behaviour. In contrast, administration of the D3- or D4-preferring dopamine receptor agonists PD 128,907 (1.5 and 3.0 µg) and PD 168,077 (0.3 and 3.0 µg), respectively, did not promote reinstatement when administered into either the core or the shell. Taken together, these results indicate that activation of D1/D5 or D2 dopamine receptors, in the limbic shell subregion of the nucleus accumbens but not the basal ganglia-orientated accumbens core, promotes the reinstatement of cocaine-seeking behaviour. [source]


Contrasting effects of selective lesions of nucleus accumbens core or shell on inhibitory control and amphetamine-induced impulsive behaviour

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 2 2008
E. R. Murphy
Abstract The core and shell subregions of the nucleus accumbens receive differential projections from areas of the medial prefrontal cortex that have dissociable effects on impulsive and perseverative responding. The contributions of these subregions to simple instrumental behaviour, inhibitory control and behavioural flexibility were investigated using a ,forced choice' task, various parameter manipulations and an omission schedule version of the task. Post-training, selective core lesions were achieved with microinjections of quinolinic acid and shell lesions with ibotenic acid. After a series of behavioural task manipulations, rats were re-stabilized on the standard version of the task and challenged with increasing doses of d - amphetamine (vehicle, 0.5 or 1.0 mg/kg i.p. 30 min prior to test). Neither core- nor shell-lesioned rats exhibited persistent deficits in simple instrumental behaviour or challenges to behavioural flexibility or inhibitory control. Significant differences between lesion groups were unmasked by d- amphetamine challenge in the standard version of the forced task. Core lesions potentiated and shell lesions attenuated the dose-dependent effect of d- amphetamine on increasing anticipatory responses seen in sham rats. These data imply that the accumbens core and shell subregions do not play major roles in highly-trained task performance or in challenges to behavioural control, but may have opposed effects following d- amphetamine treatment. Specifically, they suggest the shell subregion to be necessary for dopaminergic activation driving amphetamine-induced impulsive behaviour and the core subregion for the normal control of this behaviour via conditioned influences. [source]


Quantitative analysis of pre- and postsynaptic sex differences in the nucleus accumbens

THE JOURNAL OF COMPARATIVE NEUROLOGY, Issue 8 2010
Paul M. Forlano
Abstract The nucleus accumbens (NAc) plays a central role in motivation and reward. While there is ample evidence for sex differences in addiction-related behaviors, little is known about the neuroanatomical substrates that underlie these sexual dimorphisms. We investigated sex differences in synaptic connectivity of the NAc by evaluating pre- and postsynaptic measures in gonadally intact male and proestrous female rats. We used DiI labeling and confocal microscopy to measure dendritic spine density, spine head size, dendritic length, and branching of medium spiny neurons (MSNs) in the NAc, and quantitative immunofluorescence to measure glutamatergic innervation using pre- (vesicular glutamate transporter 1 and 2) and postsynaptic (postsynaptic density 95) markers, as well as dopaminergic innervation of the NAc. We also utilized electron microscopy to complement the above measures. Clear but subtle sex differences were identified, namely, in distal dendritic spine density and the proportion of large spines on MSNs, both of which are greater in females. Sex differences in spine density and spine head size are evident in both the core and shell subregions, but are stronger in the core. This study is the first demonstration of neuroanatomical sex differences in the NAc and provides evidence that structural differences in synaptic connectivity and glutamatergic input may contribute to behavioral sex differences in reward and addiction. J. Comp. Neurol. 518:1330,1348, 2010. © 2009 Wiley-Liss, Inc. [source]