Home About us Contact | |||
Shear Bond Strength (shear + bond_strength)
Selected AbstractsShear Bond Strength of Enamel Treated with Seven Carbamide Peroxide Bleaching AgentsJOURNAL OF ESTHETIC AND RESTORATIVE DENTISTRY, Issue 4 2004ROBERTA TARKAN. ABSTRACT Purpose:: Lower average values of bond strength of adhesive systems to enamel bleached with 10% carbamide peroxide agents have been reported, but the effects of higher concentrations of carbamide peroxide bleaching agents are still unknown. The aim of this in vitro study was to evaluate the shear bond strength of enamel treated with different concentrations of carbamide peroxide to an adhesive system after a postbleaching period of storage in artificial saliva for 15 days. Materials and Methods: Seven carbamide peroxide bleaching agents with concentrations varying from 10 to 22% were analyzed. A placebo agent was used as a control group. The agents were applied on the enamel fragments for 8 h/d for 42 days. During the remaining time, the specimens were stored in artificial saliva. After that time, the fragments were stored individually in artificial saliva for 15 days. An adhesive system was used to bond resin-based composite cylinders on the enamel surface. Shear bond strength tests were performed and the fractured surfaces of the specimens were visually examined with a stereomicroscope at ×30. Results: The analysis of variance did not show differences in shear bond strength among the treatment agents. The fractures for all treatment agents were predominantly adhesive. Conclusion: After 15 days storage in artificial saliva, different concentrations of carbamide peroxide bleaching agents and a placebo agent had the same enamel shear bond strength values. [source] Effects of surface treatments on bond strength of glass-infiltrated ceramicJOURNAL OF ORAL REHABILITATION, Issue 9 2001Y.-C. Lu The purpose of this study was to evaluate the effects of various surface treatments on the bond strength at the In-Ceram/resin composite interface. Ninety-eight In-Ceram specimens were divided into seven groups and exposed to various surface treatments as follows: (A) control (B) saliva contamination (C) saliva contamination plus aluminum oxide sandblasting (D) glove powder contamination (E) glove powder contamination plus aluminum oxide sandblasting (F) rough aluminum oxide sandblasting and (G) excess glass infiltration. A resin composite cylinder was cemented to each In-Ceram specimen with Panavia 21 resin luting cement. Half of the cemented specimens in each group were stored in water for 24 h, and the other half were stored in water for 2 weeks and then were thermo-cycled for 2000 cycles. Shear bond strengths (SBS) of seven specimens in each subgroup were determined and analysed using analysis of variance (ANOVA) and Tukey HSD test as well as Student,s t -test. Scanning electronic microscopy was used to identify the type of bond failure. Shear bond strength was significantly decreased by saliva and glove powder contaminations (P < 0·05). Sandblasting treatment did not improve the saliva-contaminated specimens. However, the glove powder plus sandblasting group showed no significant difference in SBS compared with the control group. There was no significant difference in SBS between the excess glass-infiltrating group and the control group. The SBS was significantly decreased by rough aluminum oxide sandblasting (P < 0·05). The SBS values of groups without thermocycling were significantly greater than those of groups with thermocycling (P < 0·05). There were no significant differences among SBS values of the seven groups with thermocycling. Combined cohesive and adhesive bond failures were seen in every group. Various surface treatments or contaminants may significantly influence the bond strength of In-Ceram restorative in clinical use. [source] Shear bond strength of luting agents to fixed prosthodontic restorative core materialsAUSTRALIAN DENTAL JOURNAL, Issue 4 2009N Capa Abstract Background:, Bonding properties of luting cements are important for retention of restorative core materials. The aim of this study was to compare the bonding performance of a resin-modified glass ionomer cement and a self-adhesive resin cement to various fixed prosthodontic core materials. Methods:, Cylindrical specimens with a thickness of 2 mm and a diameter of 5 mm were fabricated from Au-Pd-Ag, Co-Cr, Ni-Cr-Mo, Ni-Cr-Fe alloys, titanium, zirconia and Empress II (n = 20). Each group was divided into two subgroups to be luted with two different luting agents. Composite resin blocks were cemented onto specimens with RelyXUnicem and FujiCem. A shear bond strength machine with 50 kg load cell and 0.50 mm/min crosshead speed was used. Kruskal Wallis test, Dunn's Multiple Range test and Mann-Whitney-U test were used for statistical analysis. The results were evaluated in a confidence interval of p < 0.05. Results:, The highest bond strength was obtained between Ni-Cr-Fe-RelyXUnicem (8.22 ± 2.15 MPa) and the lowest was between Empress II-FujiCem (1.48 ± 0.9 MPa). In FujiCem groups, Co-Cr and Ni-Cr-Fe showed significantly higher bond strength than Au-Pd-Ag and Empress II. In RelyX Unicem groups, Ni-Cr-Fe showed higher bond strength than Empress II. Conclusions:, The types of luting agents and restorative core materials may have a significant influence on bond strength. [source] Effect of endodontic irrigation on bonding of resin cement to radicular dentinEUROPEAN JOURNAL OF ORAL SCIENCES, Issue 1 2005Mikako Hayashi The influence of endodontic irrigation on shear bond strengths of resin cement to radicular dentin was investigated. Human radicular dentin blocks were divided into four groups and subjected to one of four endodontic irrigations: ethylenediaminetetraacetic acid (EDTA) group, 17% EDTA for 60 s; EDTA/sodium hypochlorite (NaOCl) group, 17% EDTA for 60 s followed by 10 ml of 5% NaOCl for 15 s; NaOCl group, 10 ml of 5% NaOCl for 15 s; and control group, no treatment. Morphological changes of dentin surface after endodontic irrigation were observed by scanning electron microscopy (SEM). A resin block was bonded to the radicular dentin after irrigation using resin cement with either wet-bonding (Uni-Etch/One-Step; Bisco) or self-etching (Tyrian SPE/One-Step Plus; Bisco) adhesives. Shear bond strengths were measured and the penetration of resin tags into dentinal tubules at resin,dentin interface was observed by SEM. With the wet-bonding system, the shear bond strengths for the EDTA/NaOCl group, in which dentinal tubules openings and uniform resin tag penetration into dentinal tubules were observed, were significantly higher than the EDTA and control groups. With the self-etching system, the shear bond strengths were significantly lower in the EDTA group compared with the NaOCl and control groups. The effects of endodontic irrigation on the bonding of resin cement to radicular dentin depended on the dentin bonding system used. [source] Effects of a fluoride etchant on resin bonding to titanium-aluminum-niobium alloyEUROPEAN JOURNAL OF ORAL SCIENCES, Issue 4 2004Hiroaki Yanagida This investigation was carried out in order to evaluate ammonium hydrogen fluoride (AHF) and cupric chloride (CC) as components of a metal etchant. The surface of cast titanium-aluminum-niobium (Ti-6Al-7Nb) was air-abraded with alumina, etched for 10 s, and rinsed with water. A phosphate or a thiophosphate primer was applied to the bonding area, and an acrylic rod was bonded to the specimen with a tri- n -butylborane-initiated self-curing luting agent. Shear bond strengths were determined after thermocycling (4°C and 60°C) for 10,000 cycles. The average bond strength was significantly influenced by thermocycling, AHF, and primer, but was not influenced by CC. The maximum average bond strengths were obtained when the etchant consisted of 5mass% AHF, with and without 0.3mass% CC. Microphotographs showed that numerous micropits were created on the etched surface, suggesting increased micromechanical retention. In conclusion, chemical etching with 5mass% AHF significantly improved the durability of resin bonding to Ti-6Al-7Nb. [source] Adhesive bonding of titanium,aluminum,niobium alloy with nine surface preparations and three self-curing resinsEUROPEAN JOURNAL OF ORAL SCIENCES, Issue 2 2003Hiroaki Yanagida The purpose of the current study was to evaluate the adhesive performance of metal conditioners when used for bonding between auto-polymerizing methacrylic resins and a titanium alloy. Disk specimens were cast from a titanium,aluminum,niobium (Ti,6Al,7Nb) alloy, air-abraded with alumina, and bonded with 24 combinations of eight metal conditioners (Acryl Bond, ACB; All-Bond 2 Primer B, ABB; Alloy Primer, ALP; Cesead II Opaque Primer, COP; Metafast Bonding Liner, MBL; Metal Primer II, MPII; MR Bond, MRB; Super-Bond liquid, SBL) and three autopolymerizing methacrylic resins (Repairsin, RE; Super-Bond C & B, SB; Tokuso Rebase; TR). Unprimed specimens were used as controls. Shear bond strengths were determined both before and after thermocycling (4,60°C, 20, 000 cycles). The ALP-SB group recorded the greatest post-thermocycling bond strength (21.8 MPa) followed by the COP-SB group (17.8 MPa) and the MPII-SB group. The post-thermocycling bond strengths of the unprimed-SB group and the ALP-RE group were statistically comparable. No significant differences were found among the nine TR resin groups, and these groups showed the lowest bond strength. In conclusion, the use of one of the three conditioners (ALP, COP, and MPII) in combination with the SB resin is recommended for bonding the Ti,6Al,7Nb alloy. [source] Adhesive bonding of titanium nitride-plated stainless steel for magnetic attachmentsEUROPEAN JOURNAL OF ORAL SCIENCES, Issue 3 2001Yohsuke Taira The purpose of this study was to evaluate adhesive bonding of resin to titanium nitride ion-plated stainless steel in order for magnetic attachments to survive in the oral environment. Two primers, Cesead II Opaque Primer (CPII) and Metal Primer II (MPII), and one bonding agent, Super-Bond C&B (SB), were used. The surfaces of stainless steel disks were ground and then plated with titanium nitride. After the primer and SB resin were applied, a self-curing resin was bonded to the metal surfaces. Shear bond strengths were determined after 24 h of water storage and after 2,000 thermocycles. Titanium nitride ion-plated stainless steel showed bond strength comparable to the non-plated material. After thermocycling, all specimens of the group no primer/no SB were debonded. The bond strengths of groups CPII/no SB, MPII/no SB and no primer/SB were significantly lower bond strengths than groups CPII/SB and MPII/SB. An appropriate combination of primer and bonding agent should be selected when bonding a magnetic attachment to the denture base. [source] Shear bond strengths of tooth fragments reattached or restoredJOURNAL OF ORAL REHABILITATION, Issue 1 2003A. Sengun summary, This study investigated the shear bond strengths of sectioned human mandibular incisor edge fragments reattached using luting cements, bonding agents or restored with composite resins. Seventy teeth were randomly distributed among six experimental groups and a control group. Leaving half of the anatomic crowns exposed, the teeth were embedded in self-cure acrylic resins with the exposed part then sectioned. The fragments in groups 1,4 were bonded to their respective teeth using Clearfil Liner Bond 2V, Scotch Bond Multi Purpose Plus, Panavia-F and 3M Opal Luting cement. The 5th and 6th groups were restored with composite resins (Silux 3M and Clearfil AP-X) using their bonding agents (Single Bond and Clearfil SE Bond). The results indicated that reattachment of fractured incisal fragments by using new generation bonding agents was effective against shear stresses, comparable with the intact teeth. Instead of restoration with composite resins therefore reattachment of a fractured fragment might be more preferable in cases of dental trauma. [source] Effects of surface treatments on bond strength of glass-infiltrated ceramicJOURNAL OF ORAL REHABILITATION, Issue 9 2001Y.-C. Lu The purpose of this study was to evaluate the effects of various surface treatments on the bond strength at the In-Ceram/resin composite interface. Ninety-eight In-Ceram specimens were divided into seven groups and exposed to various surface treatments as follows: (A) control (B) saliva contamination (C) saliva contamination plus aluminum oxide sandblasting (D) glove powder contamination (E) glove powder contamination plus aluminum oxide sandblasting (F) rough aluminum oxide sandblasting and (G) excess glass infiltration. A resin composite cylinder was cemented to each In-Ceram specimen with Panavia 21 resin luting cement. Half of the cemented specimens in each group were stored in water for 24 h, and the other half were stored in water for 2 weeks and then were thermo-cycled for 2000 cycles. Shear bond strengths (SBS) of seven specimens in each subgroup were determined and analysed using analysis of variance (ANOVA) and Tukey HSD test as well as Student,s t -test. Scanning electronic microscopy was used to identify the type of bond failure. Shear bond strength was significantly decreased by saliva and glove powder contaminations (P < 0·05). Sandblasting treatment did not improve the saliva-contaminated specimens. However, the glove powder plus sandblasting group showed no significant difference in SBS compared with the control group. There was no significant difference in SBS between the excess glass-infiltrating group and the control group. The SBS was significantly decreased by rough aluminum oxide sandblasting (P < 0·05). The SBS values of groups without thermocycling were significantly greater than those of groups with thermocycling (P < 0·05). There were no significant differences among SBS values of the seven groups with thermocycling. Combined cohesive and adhesive bond failures were seen in every group. Various surface treatments or contaminants may significantly influence the bond strength of In-Ceram restorative in clinical use. [source] Improved bonding of adhesive resin to sintered porcelain with the combination of acid etching and a two-liquid silane conditionerJOURNAL OF ORAL REHABILITATION, Issue 1 2001H. Kato This study determined the bond strengths of adhesive resins joined to a feldspathic porcelain (VMK 68) for the purpose of developing the most durable surface preparation for the porcelain. Three porcelain surfaces,ground, air-abraded with alumina, and etched with hydrofluoric acid,were prepared. A two-liquid porcelain conditioner that contained both 4-methacryloyloxyethyl trimellitate anhydride (4-META) and a silane coupler (Porcelain Liner M) was used as the priming agent. Each of the two liquid components of the conditioner was also used individually in order to examine the effects of the respective chemical ingredients on adhesive bonding. Two methyl methacrylate (MMA)-based resins initiated with tri- n -butylborane (TBB) either with or without 4-META (MMA-TBB and 4-META/MMA-TBB resins) were used as the luting agents. Shear bond strengths were determined both before and after thermocycling. Shear testing results indicated that thermocycling was effective for disclosing poor bonding systems, and that both mechanical and chemical retention were indispensable for bonding the porcelain. Of the combinations assessed, etching with hydrofluoric acid followed by two-liquid priming with the Porcelain Liner M material generated the most durable bond strength (33·3 MPa) for the porcelain bonded with the 4-META/MMA-TBB resin (Super-Bond C&B). [source] Effect of etching and sandblasting on bond strength to sintered porcelain of unfilled resinJOURNAL OF ORAL REHABILITATION, Issue 2 2000H. Kato This study determined the bond strength of an unfilled resin joined to a feldspathic porcelain for the purpose of evaluating the retentive performance of the prepared material surfaces. Porcelain disks (VMK 68 dentin) were either air abraded with alumina (AAA) or etched with one of the following five etchants: (1) ammonium hydrogen bifluoride (AHB); (2) acidulated phosphate fluoride (APF); (3) hydrofluoric acid (HFA); (4) phosphoric acid (PHA); and (5) sulfuric acid-hydrofluoric acid (SHF). Specimens ground with abrasive paper were also used as controls. After surface preparation, the two different sized porcelain disks were bonded together with a methyl methacrylate-based resin initiated with tri- n -butylborane (MMA-TBB resin). Shear bond strengths were determined both before and after thermocycling. Before the thermocycling, the greatest bond strengths (21·3 and 23·7 MPa) were generated with the use of the SHF and HFA agents, followed by the AHB agent (18·4 MPa). Reduction in bond strength after thermocycling was significant for all groups, although the SHF- and HFA-treated groups exhibited bond strengths greater than 15 MPa even after the thermocycling. The results indicated the effectiveness of the SHF- or HFA-etching for retaining the acrylic resin to the porcelain. However, ageing testing also revealed insufficient retentive characteristics of the acrylic resin by etching alone. [source] Bonding of a Silorane-Based Composite System to BoneADVANCED ENGINEERING MATERIALS, Issue 11 2009Xiaohong Wu This work was to analyze by Weibull statistics the shear bond strength of a low-shrink Silorane-based composite system to bone. The etching abilities of the adhesives were investigated by scanning electron microscopy. Results suggest that an effective and reliable bond to bone could be achieved by the Silorane-based composite system, showing the potential of this system to be used as a bone cement. [source] Characterization of a Novel Fiber Composite Material for Mechanotransduction Research of Fibrous Connective TissuesADVANCED FUNCTIONAL MATERIALS, Issue 5 2010Hazel R. C. Screen Abstract Mechanotransduction is the fundamental process by which cells detect and respond to their mechanical environment, and is critical for tissue homeostasis. Understanding mechanotransduction mechanisms will provide insights into disease processes and injuries, and may support novel tissue engineering research. Although there has been extensive research in mechanotransduction, many pathways remain unclear, due to the complexity of the signaling mechanisms and loading environments involved. This study describes the development of a novel hydrogel-based fiber composite material for investigating mechanotransduction in fibrous tissues. By encapsulating poly(2-hydroxyethyl methacrylate) rods in a bulk poly(ethylene glycol) matrix, it aims to create a micromechanical environment more representative of that seen in vivo. Results demonstrated that collagen-coated rods enable localized cell attachment, and cells are successfully cultured for one week within the composite. Mechanical analysis of the composite indicates that gross mechanical properties and local strain environments could be manipulated by altering the fabrication process. Allowing diffusion between the rods and surrounding matrix creates an interpenetrating network whereby the relationships between shear and tension are altered. Increasing diffusion enhances the shear bond strength between rods and matrix and the levels of local tension along the rods. Preliminary investigation into fibroblast mechanotransduction illustrates that the fiber composite upregulates collagen I expression, the main protein in fibrous tissues, in response to cyclic tensile strains when compared to less complex 2D and 3D environments. In summary, the ability to create and manipulate a strain environment surrounding the fibers, where combined tensile and shear forces uniquely impact cell functions, is demonstrated. [source] OXYGEN-INHIBITED LAYER IN ADHESION DENTISTRYJOURNAL OF ESTHETIC AND RESTORATIVE DENTISTRY, Issue 5 2004Byoung I. Suh MS ABSTRACT Purpose:: Characteristics of the oxygen-inhibited layer, including bond strength, photoinitiator decomposition, and post-curing degree of conversion, were investigated. Materials and Methods: To investigate shear bond strength, BisCover (Bisco, Inc., Schaumburg, IL, USA) and D/E Resin (Bisco, Inc.) were placed on disks of Renew composite (Bisco, Inc.) and cured both with and without an oxygen-inhibited layer. Light-Bond composite (Reliance Orthodontic, Itasca, IL, USA) was placed in a gelatin capsule and light cured over the cured resin. After soaking in water for 2 hours at 37°C, specimens were sheared to failure using a universal testing machine (Model 4466, Instron Inc., Canton, MA, USA). To investigate microtensile bond strength, composite substrates prepared using Renew A2 composite were light cured either in air or under nitrogen. Light-Core (Bisco, Inc.) was placed on each substrate and light cured. The resulting specimens were sectioned into composite beams and stressed to failure using a microtensile tester (built by Bisco, Inc.). To determine camphorquinone (CQ) decomposition, an experimental CQ resin was placed between two glass plates and irradiated for different time intervals. The absorption spectrum was obtained using a Cary 50 Bio UV-Visible Spectrometer (Varian, Mulgrave, Australia). To explore the degree of conversion, polyester film strips (Mylar, DuPont, Wilmington, DE, USA) coated with the CQ resin were pre-cured in air for different time periods, and then post-cured at low intensity for 5 minutes under nitrogen. A Spectrum 1000FTIR Spectrometer (Perkin Elmer, Norwalk, CT, USA) was used to measure the degree of conversion. Results: Bond strength tests resulted in no significant difference between samples with or without an oxygen-inhibited layer. The oxygen-inhibited layer contained reduced amounts of photoinitiator. The degree of conversion of post-cured oxygen-inhibited layers was lower than that for the control. Conclusion: An oxygen-inhibited layer is not necessary for bonding with composite resin. [source] Shear Bond Strength of Enamel Treated with Seven Carbamide Peroxide Bleaching AgentsJOURNAL OF ESTHETIC AND RESTORATIVE DENTISTRY, Issue 4 2004ROBERTA TARKAN. ABSTRACT Purpose:: Lower average values of bond strength of adhesive systems to enamel bleached with 10% carbamide peroxide agents have been reported, but the effects of higher concentrations of carbamide peroxide bleaching agents are still unknown. The aim of this in vitro study was to evaluate the shear bond strength of enamel treated with different concentrations of carbamide peroxide to an adhesive system after a postbleaching period of storage in artificial saliva for 15 days. Materials and Methods: Seven carbamide peroxide bleaching agents with concentrations varying from 10 to 22% were analyzed. A placebo agent was used as a control group. The agents were applied on the enamel fragments for 8 h/d for 42 days. During the remaining time, the specimens were stored in artificial saliva. After that time, the fragments were stored individually in artificial saliva for 15 days. An adhesive system was used to bond resin-based composite cylinders on the enamel surface. Shear bond strength tests were performed and the fractured surfaces of the specimens were visually examined with a stereomicroscope at ×30. Results: The analysis of variance did not show differences in shear bond strength among the treatment agents. The fractures for all treatment agents were predominantly adhesive. Conclusion: After 15 days storage in artificial saliva, different concentrations of carbamide peroxide bleaching agents and a placebo agent had the same enamel shear bond strength values. [source] The effect of thermocycling and dentine pre-treatment on the durability of the bond between composite resin and dentineJOURNAL OF ORAL REHABILITATION, Issue 5 2004M. S. Huang Summary, The high bond strength between restorative resin and dentine plays an important role in long-term performance of restorations in the oral environment. A variety of treatment techniques have been described to enhance the bond strength of composite resin to dentine. Unfortunately, few studies have reported available bond durability of adhesive resins to dentine. The purpose of this research was to study the shear bond strength of composite resin to dentine pre-treated with phosphoric acid, self-etching agent or Nd:YAP laser irradiation. The durability of bond strength between resin and dentine stored in the artificial saliva thermocycling between 5 and 55 °C was also evaluated. The scanning electron microscope was used to assess the treated-dentine surfaces. The mean value of the shear bond strength in the acid-etching group (18·2 ± 4·9 MPa) was the highest among the three dentine treatments (self-etching system: 12·6 ±3·0 MPa, Nd:YAP laser: 13·4 ± 3·3 MPa) prior to thermocycling. After thermocycling, shear strength values of all treated dentines decreased with increasing number of the cycles. When subjected to 3000 thermocycles, the mean bond strengths of these pre-treated samples to composite resin became 9·1 ± 1·4, 7·8 ± 1·8, and 8·1 ± 1·7 MPa for acid-etching, self-etching and laser-irradiation, respectively, with a significant reduction of 38,50%. [source] Effect of three adhesive primers for a noble metal on the shear bond strengths of three resin cementsJOURNAL OF ORAL REHABILITATION, Issue 1 2001K. Yoshida The purpose of this study was to evaluate the durability and shear bond strengths of the different combinations of three adhesive primers and three resin cements to a silver,palladium,copper,gold (Ag,Pd,Cu,Au) alloy. The adhesive primers Alloy Primer® (AP), Metal PrimerII® (MPII) and Metaltite® (MT), and the resin cements BistiteII® (BRII), Panavia Fluoro Cement® (PFC) and Super-Bond C&B® (SB) were used. Two sizes of casting alloy disks were either non-primed or primed and cemented with each of the three resin cements. The specimens were stored in a 37 °C water bath for 24 h and then immersed alternately in 4 and 60 °C water baths for 1 min each for up to 100 000 thermal cycles. Shear mode testing at a crosshead speed of 0·5 mm/min was then performed. The application of MPII or MT was effective for improving the shear bond strength between each of the three resin cements and the Ag,Pd,Cu,Au alloy compared with non-primed specimens. However, when primed with MPII or MT and cemented with SB, the bond strength at 100 000 thermal cycles was significantly lower than that at thermal cycle 0. When primed with AP, the specimens cemented with BRII or PFC showed lower bond strength than non-primed specimens and failed at the metal,resin cement interface at 100 000 thermal cycles. On the other hand, AP was effective in enhancing the shear bond strength of SB to the Ag,Pd,Cu,Au alloy. The five combined uses of an adhesive metal primer and resin cement (combinations of MPII or MT and BRII or PFC and AP and SB) are applicable to the cementation of prosthodontic restorations without complicated surface modification of the noble alloy. [source] Synthesis of novel moisture-curable polyurethanes end-capped with trialkoxysilane and their application to one-component adhesivesJOURNAL OF POLYMER SCIENCE (IN TWO SECTIONS), Issue 13 2007Yukihiro Nomura Abstract Novel silane endcappers and novel polyurethanes end-capped with trimethoxysilane (silylated polyurethanes) were developed as water-curable materials in which the curing reaction occurred under humid conditions in the presence of dioctyltin diversatate as a curing catalyst. A variety of amine-terminated trimethoxysilane compounds were synthesized by the Michael addition reaction of commercially available 3-aminopropyltrimethoxysilane with acrylates, and the resulting silane endcappers were used to react with isocyanate-terminated polyurethanes, providing the silylated polyurethanes. The moisture-curable silylated polyurethanes were used for the preparation of novel one-component and solvent-free adhesives. The evaluated properties were the curing speed, the tensile shear bond strength, and the adherence to some substrates. The longer alkyl chains of the silane endcappers derived from various acrylates led to a slower curing speed, lower tensile strength at break, and longer elongation at break of the silylated polyurethanes. The tensile shear bond strength of the silylated polyurethane-based adhesive decreased with decreasing the trimethoxysilane end-capping ratio, whereas an increase in the adherence was observed. The adherence to the acrylic substrate was improved by changes in the main-chain structure of the polyurethane based on the composition of poly(propylene oxide) and poly(ethylene oxide). © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2689,2704, 2007 [source] Effect of Net Fiber Reinforcement Surface Treatment on Soft Denture Liner Retention and LongevityJOURNAL OF PROSTHODONTICS, Issue 4 2010MPhil, Muhanad M. Hatamleh BSc Abstract Purpose: To evaluate shear bond strength of Molloplast-B soft liner attached to different acrylic surfaces (smooth, rough, and Sticktech net fiber-reinforced interfaces) after 3000 thermal cycles. Materials and Methods: Sixty-nine specimens were fabricated by attaching Molloplast-B soft liner to acrylic bases of three interfaces (n= 23); smooth (Group 1, control), rough (Group 2), and Sticktech net fiber-reinforced interface (Group 3). The specimens underwent 3000 thermocycles (5 and 55°C) before being subject to a shear bond test at 2 mm/min crosshead speed. Debonding sites were investigated using an optical microscope at 40× magnification. Bond failures were categorized as adhesive, cohesive, or mixed. Results: Mean (SD) bond strength values (MPa) were: 0.71 (0.15); 0.63 (0.07); and 0.83 (0.12) for smooth, rough, and fiber-reinforced acrylic interfaces, respectively. The mean values were analyzed using one-way ANOVA and Bonferroni post hoc test for pairwise comparisons (p, 0.05). The net fiber-reinforced acrylic interface exhibited a statistically significantly higher bond strength value when compared to smooth and rough acrylic interfaces (P= 0.003 and P= 0.000, respectively). Modes of failure were mainly cohesive (91%), followed by mixed failures (9%). Conclusions: Molloplast-B exhibited a stronger bond to StickTech Net fiber-reinforced surfaces when compared to smooth and rough acrylic interfaces after thermocycling. This may enhance prosthesis serviceability during clinical use. [source] Evaluation of the Bond Strength of Denture Base Resins to Acrylic Resin Teeth: Effect of ThermocyclingJOURNAL OF PROSTHODONTICS, Issue 5 2009Julię Marra DDS Abstract Purpose: The purpose of this study was to evaluate the thermocycling effects and shear bond strength of acrylic resin teeth to denture base resins. Materials and Methods: Three acrylic teeth (Biotone, Trilux, Ivoclar) were chosen for bonding to four denture base resins: microwave-polymerized (Acron MC), heat-polymerized (Lucitone 550 and QC-20), and light-polymerized (Versyo.bond). Twenty specimens were produced for each denture base/acrylic tooth combination and were divided into two groups (n = 10): without thermocycling (control groups) and thermocycled groups submitted to 5000 cycles between 4 and 60°C. Shear strength tests (MPa) were performed with a universal testing machine at a crosshead speed of 1 mm/min. Statistical analysis of the results was carried out with three-way ANOVA and Bonferroni's multiple comparisons post hoc analysis for test groups (,= 0.05). Results: The shear bond strengths of Lucitone/Biotone, Lucitone/Trilux, and Versyo/Ivoclar specimens were significantly decreased by thermocycling, compared with the corresponding control groups (p < 0.05). The means of Acron/Ivoclar and Lucitone/Ivoclar specimens increased after thermocycling (p < 0.05). The highest mean shear bond strength value was observed with Lucitone/Biotone in the control group (14.54 MPa) and the lowest with QC-20/Trilux in the thermocycled group (3.69 MPa). Conclusion: Some acrylic tooth/denture base resin combinations can be more affected by thermocycling; effects vary based upon the materials used. [source] Effect of endodontic irrigation on bonding of resin cement to radicular dentinEUROPEAN JOURNAL OF ORAL SCIENCES, Issue 1 2005Mikako Hayashi The influence of endodontic irrigation on shear bond strengths of resin cement to radicular dentin was investigated. Human radicular dentin blocks were divided into four groups and subjected to one of four endodontic irrigations: ethylenediaminetetraacetic acid (EDTA) group, 17% EDTA for 60 s; EDTA/sodium hypochlorite (NaOCl) group, 17% EDTA for 60 s followed by 10 ml of 5% NaOCl for 15 s; NaOCl group, 10 ml of 5% NaOCl for 15 s; and control group, no treatment. Morphological changes of dentin surface after endodontic irrigation were observed by scanning electron microscopy (SEM). A resin block was bonded to the radicular dentin after irrigation using resin cement with either wet-bonding (Uni-Etch/One-Step; Bisco) or self-etching (Tyrian SPE/One-Step Plus; Bisco) adhesives. Shear bond strengths were measured and the penetration of resin tags into dentinal tubules at resin,dentin interface was observed by SEM. With the wet-bonding system, the shear bond strengths for the EDTA/NaOCl group, in which dentinal tubules openings and uniform resin tag penetration into dentinal tubules were observed, were significantly higher than the EDTA and control groups. With the self-etching system, the shear bond strengths were significantly lower in the EDTA group compared with the NaOCl and control groups. The effects of endodontic irrigation on the bonding of resin cement to radicular dentin depended on the dentin bonding system used. [source] Shear bond strengths of tooth fragments reattached or restoredJOURNAL OF ORAL REHABILITATION, Issue 1 2003A. Sengun summary, This study investigated the shear bond strengths of sectioned human mandibular incisor edge fragments reattached using luting cements, bonding agents or restored with composite resins. Seventy teeth were randomly distributed among six experimental groups and a control group. Leaving half of the anatomic crowns exposed, the teeth were embedded in self-cure acrylic resins with the exposed part then sectioned. The fragments in groups 1,4 were bonded to their respective teeth using Clearfil Liner Bond 2V, Scotch Bond Multi Purpose Plus, Panavia-F and 3M Opal Luting cement. The 5th and 6th groups were restored with composite resins (Silux 3M and Clearfil AP-X) using their bonding agents (Single Bond and Clearfil SE Bond). The results indicated that reattachment of fractured incisal fragments by using new generation bonding agents was effective against shear stresses, comparable with the intact teeth. Instead of restoration with composite resins therefore reattachment of a fractured fragment might be more preferable in cases of dental trauma. [source] Effect of three adhesive primers for a noble metal on the shear bond strengths of three resin cementsJOURNAL OF ORAL REHABILITATION, Issue 1 2001K. Yoshida The purpose of this study was to evaluate the durability and shear bond strengths of the different combinations of three adhesive primers and three resin cements to a silver,palladium,copper,gold (Ag,Pd,Cu,Au) alloy. The adhesive primers Alloy Primer® (AP), Metal PrimerII® (MPII) and Metaltite® (MT), and the resin cements BistiteII® (BRII), Panavia Fluoro Cement® (PFC) and Super-Bond C&B® (SB) were used. Two sizes of casting alloy disks were either non-primed or primed and cemented with each of the three resin cements. The specimens were stored in a 37 °C water bath for 24 h and then immersed alternately in 4 and 60 °C water baths for 1 min each for up to 100 000 thermal cycles. Shear mode testing at a crosshead speed of 0·5 mm/min was then performed. The application of MPII or MT was effective for improving the shear bond strength between each of the three resin cements and the Ag,Pd,Cu,Au alloy compared with non-primed specimens. However, when primed with MPII or MT and cemented with SB, the bond strength at 100 000 thermal cycles was significantly lower than that at thermal cycle 0. When primed with AP, the specimens cemented with BRII or PFC showed lower bond strength than non-primed specimens and failed at the metal,resin cement interface at 100 000 thermal cycles. On the other hand, AP was effective in enhancing the shear bond strength of SB to the Ag,Pd,Cu,Au alloy. The five combined uses of an adhesive metal primer and resin cement (combinations of MPII or MT and BRII or PFC and AP and SB) are applicable to the cementation of prosthodontic restorations without complicated surface modification of the noble alloy. [source] |