Severe Economic Losses (severe + economic_loss)

Distribution by Scientific Domains


Selected Abstracts


The fundamental and realized niche of the Monterey Pine aphid, Essigella californica (Essig) (Hemiptera: Aphididae): implications for managing softwood plantations in Australia

DIVERSITY AND DISTRIBUTIONS, Issue 4 2004
Trudi N. Wharton
ABSTRACT Essigella californica is a pine aphid native to western North America. In Australia, E. californica is considered an invasive pest that has the potential to cause severe economic loss to the Australian forestry industry. Two CLIMEX models were developed to predict the Australian and global distribution of E. californica under current climate conditions based upon the aphid's known North American distribution. The first model (model I) was fitted using the reasonably contiguous set of location records in North America that constituted the known range of E. californica, and excluded consideration of a single (reliable) location record of the aphid in southern Florida. The second model (model II) was fitted using all known records in North America. Model I indicated that the aphid would be climatically restricted to the temperate, Mediterranean and subtropical climatic regions of Australia. In northern Australia it would be limited by hot, wet conditions, while in more central areas of Australia it is limited by hot, dry conditions. Model II is more consistent with the current Australian distribution of E. californica. The contrast in geographical range and climatic conditions encompassed between the two models appears to represent the difference between the realized niche (model I) and fundamental niche (model II) of E. californica. The difference may represent the strength of biotic factors such as host limitation, competition and parasitism in limiting geographical spread in the native range. This paper provides a risk map for E. californica colonization in Australia and globally. E. californica is likely to remain a feature of the Australian pine plantations, and any feasibility studies into establishing coniferous plantations in lower rainfall areas should consider the likely impact of E. californica. [source]


Molecular characterization of esterase E3 gene associated with organophosphorus insecticide resistance in the New World screwworm fly, Cochliomyia hominivorax

MEDICAL AND VETERINARY ENTOMOLOGY, Issue 2009
R. A. CARVALHO
Abstract The New World screwworm, Cochliomyia hominivorax (Coquerel) (Diptera: Calliphoridae), is one of the most important myiasis-causing flies in South America. It is responsible for severe economic losses to livestock producers, mainly because it causes mortality in newborn calves and reductions in the quality of leather and in the production of milk and meat. The economic losses caused by myiasis, along with those caused by other internal and external parasites, are the main factors limiting meat production. In Brazil, C. hominivorax has been controlled by applying insecticides, particularly organophosphate (OP)-based compounds. However, the improper and continuous use of these chemicals can lead to the selection of OP-resistant strains. This, associated with the fast development of OP resistance in other myiasis-causing flies, shows the importance of investigating resistance in C. hominivorax. Based on the findings of previous studies, the objective of the current work was to isolate and sequence the E3 gene in C. hominivorax. Mutations at the positions (Gly137 and Trp251) responsible for conferring OP resistance in Lucilia cuprina and Musca domestica L. (Muscidae) were identified in C. hominivorax. In addition, the orthologous region in C. hominivorax contained motifs that are highly conserved among carboxyl/cholinesterases and contribute to the catalytic mechanism of the active site. The characterization of this gene in natural populations of New World screwworm can be an important tool for monitoring resistance to insecticides throughout its current geographic distribution. This will provide information for the selection and implementation of more effective pest management programmes. [source]


Moniliophthora perniciosa, the causal agent of witches' broom disease of cacao: what's new from this old foe?

MOLECULAR PLANT PATHOLOGY, Issue 5 2008
LYNDEL W. MEINHARDT
SUMMARY Moniliophthora perniciosa (=Crinipellis perniciosa) causes one of the three main fungal diseases of Theobroma cacao (cacao), the source of chocolate. This pathogen causes Witches' broom disease (WBD) and has brought about severe economic losses in all of the cacao-growing regions to which it has spread with yield reductions that range from 50 to 90%. Cacao production in South America reflects the severity of this pathogen, as the yields in most of the infected regions have not returned to pre-outbreak levels, even with the introduction of resistant varieties. In this review we give a brief historical account and summarize the current state of knowledge focusing on developments in the areas of systematics, fungal physiology, biochemistry, genomics and gene expression in an attempt to highlight this disease. Moniliophthora perniciosa is a hemibiotrophic fungus with two distinct growth phases. The ability to culture a biotrophic-like phase in vitro along with new findings derived from the nearly complete genome and expression studies clearly show that these different fungal growth phases function under distinct metabolic parameters. These new findings have greatly improved our understanding of this fungal/host interaction and we may be at the crossroads of understanding how hemibiotrophic fungal plant pathogens cause disease in other crops. Historical summary of WBD:, The first WDB symptoms appear to have been described in the diaries of Alexandre Rodrigues Ferreira (described as lagartão; meaning big lizard) from his observations of cacao trees in 1785 and 1787 in Amazonia, which is consistent with the generally accepted idea that M. perniciosa, like its main host T. cacao, evolved in this region. The disease subsequently arrived in Surinam in 1895. WBD moved rapidly, spreading to Guyana in 1906, Ecuador in 1918, Trinidad in 1928, Colombia in 1929 and Grenada in 1948. In each case, cacao production was catastrophically affected with yield reductions of 50,90%. After the arrival of M. perniciosa in Bahia in 1989, Brazil went from being the world's 3rd largest producer of cacao (347 000 tonnes in 1988,1990; c. 15% of the total world production at that time) to a net importer (141 000 tonnes in 1998,2000). Fortunately for chocolate lovers, other regions of the world such as West Africa and South East Asia have not yet been affected by this disease and have expanded production to meet growing world demand (predicted to reach 3 700 000 tonnes by 2010). Classification:,Moniliophthora perniciosa (Stahel) Aime & Phillips-Mora: super-kingdom Eukaryota; kingdom Fungi; phylum Basidiomycota; subphylum Agaricomycotina; class Agaricomycetes; subclass Agaricomycetidae; order Agaricales; family Marasmiaceae; genus Moniliophthora. Useful websites:,http://www.lge.ibi.unicamp.br/vassoura/, http://nt.ars-grin.gov/taxadescriptions/keys/TrichodermaIndex.cfm, http://www.worldcocoafoundation.org/info-center/research-updates.asp, http://www.ars.usda.gov/ba/psi/spcl [source]


The Diplomonad Fish Parasite Spironucleus vortens Produces Hydrogen

THE JOURNAL OF EUKARYOTIC MICROBIOLOGY, Issue 5 2010
CORALIE O.M. MILLET
ABSTRACT. The diplomonad fish parasite Spironucleus vortens causes major problems in aquaculture of ornamental fish, resulting in severe economic losses in the fish farming industry. The strain of S. vortens studied here was isolated from an angelfish and grown in Keister's modified TY-I-S33 medium. A membrane-inlet mass spectrometer was employed to monitor, in a closed system, O2, CO2, and H2. When introduced into air-saturated buffer, S. vortens rapidly consumed O2 at the average rate of 62±4 nmol/min/107 cells and CO2 was produced at 75±11 nmol/min/107 cells. Hydrogen production began under microaerophilic conditions ([O2]=33.±15 ,M) at a rate of 77±7 nmol/min/107 cells. Hydrogen production was inhibited by 62% immediately after adding 150 ,M KCN to the reaction vessel, and by 50% at 0.24 ,M CO, suggesting that an Fe-only hydrogenase is responsible for H2 production. Metronidazole (1 mM) inhibited H2 production by 50%, while CO2 production was not affected. This suggests that metronidazole may be reduced by an enzyme of the H2 pathway, thus competing for electrons with H+. [source]


Lactic acid bacteria vs. pathogens in the gastrointestinal tract of fish: a review

AQUACULTURE RESEARCH, Issue 4 2010
Einar Ringø
Abstract Intensive fish production worldwide has increased the risk of infectious diseases. However, before any infection can be established, pathogens must penetrate the primary barrier. In fish, the three major routes of infection are the skin, gills and gastrointestinal (GI) tract. The GI tract is essentially a muscular tube lined by a mucous membrane of columnar epithelial cells that exhibit a regional variation in structure and function. In the last two decades, our understanding of the endocytosis and translocation of bacteria across this mucosa, and the sorts of cell damage caused by pathogenic bacteria, has increased. Electron microscopy has made a valuable contribution to this knowledge. In the fish-farming industry, severe economic losses are caused by furunculosis (agent, Aeromonas salmonicida spp. salmonicida) and vibriosis [agent, Vibrio (Listonella) anguillarum]. This article provides an overview of the GI tract of fish from an electron microscopical perspective focusing on cellular damage (specific attack on tight junctions and desmosomes) caused by pathogenic bacteria, and interactions between the ,good' intestinal bacteria [e.g. lactic acid bacteria (LAB)] and pathogens. Using different in vitro methods, several studies have demonstrated that co-incubation of Atlantic salmon (Salmo salar L.) foregut (proximal intestine) with LAB and pathogens can have beneficial effects, the cell damage caused by the pathogens being prevented, to some extent, by the LAB. However, there is uncertainty over whether or not similar effects are observed in other species such as Atlantic cod (Gadus morhua L.). When discussing cellular damage in the GI tract of fish caused by pathogenic bacteria, several important questions arise including: (1) Do different pathogenic bacteria use different mechanisms to infect the gut? (2) Does the gradual development of the GI tract from larva to adult affect infection? (3) Are there different infection patterns between different fish species? The present article addresses these and other questions. [source]