Several Seconds (several + second)

Distribution by Scientific Domains


Selected Abstracts


The Impact of Cerebral Source Area and Synchrony on Recording Scalp Electroencephalography Ictal Patterns

EPILEPSIA, Issue 11 2007
James X. Tao
Summary Purpose: To determine the cerebral electroencephalography (EEG) substrates of scalp EEG seizure patterns, such as source area and synchrony, and in so doing assess the limitations of scalp seizure recording in the localization of seizure onset zones in patients with temporal lobe epilepsy. Methods: We recorded simultaneously 26 channels of scalp EEG with subtemporal supplementary electrodes and 46,98 channels of intracranial EEG in presurgical candidates with temporal lobe epilepsy. We correlated intracranial EEG source area and synchrony at seizure onset with the corresponding scalp EEG. Eighty-six simultaneous intracranial- and scalp-recorded seizures from 23 patients were evaluated. Results: Thirty-four intracranial ictal discharges (40%) from 9 patients (39%) had sufficient cortical source area (namely > 10 cm2) and synchrony at seizure onset to produce a simultaneous or nearly simultaneous focal scalp EEG ictal pattern. Forty-one intracranial ictal discharges (48%) from 10 patients (43%) gradually achieved the necessary source area and synchrony over several seconds to generate a scalp EEG ictal pattern. These scalp rhythms were lateralized, but not localizable as to seizure origin. Eleven intracranial ictal discharges (13%) from 4 patients (17%) recruited the necessary source area, but lacked sufficient synchrony to result in a clearly localized or lateralized scalp ictal pattern. Conclusions: Sufficient source area and synchrony are mandatory cerebral EEG requirements for generating scalp-recordable ictal EEG patterns. The dynamic interaction of cortical source area and synchrony at the onset and during a seizure is a primary reason for heterogeneous scalp ictal EEG patterns. [source]


Levodopa-induced ocular dyskinesia in Parkinson's disease

EUROPEAN JOURNAL OF NEUROLOGY, Issue 10 2007
H. Grötzsch
Levodopa (LD)-induced dyskinesia (LID), one of the most common motor complications in advanced Parkinson's disease (PD), involve mostly the limbs, trunk and head, but unusual locations have been reported including respiratory muscles, the face and the eyes. The aim of this study was to further investigate the frequency and characteristics of LD-related abnormal involuntary eye movements (AIEMs) in PD. Thirty-two patients with advanced PD and various motor complications were evaluated and videotaped in an ON and OFF state. We found AIEMs in five patients (16%) which were present exclusively during the ON state and which completely disappeared when OFF. They consisted of repeated, stereotyped upward and/or sideways gaze deviation movements, sometimes phasic, brief and jerky, sometimes tonic and sustained for several seconds. The main direction of gaze deviation was toward the side more affected by parkinsonism. AIEMs typically paralleled limb and trunk LID and were modulated by the same facilitation and inhibitory maneuvers. We concluded that AIEMs are not uncommon in advanced PD and represent a particular topography of LID, hence the term ,ocular dyskinesia' to designate these AIEMs that seem to have a specific pattern in PD as compared with other forms of parkinsonism. [source]


Sedimentation behavior of droplets for the reactive extraction of zinc with D2EHPA

AICHE JOURNAL, Issue 1 2010
Murat Kalem
Abstract The sedimentation characteristics of the reactive standard test system zinc + D2EHPA are investigated in this work. Experiments with single droplets rising in a stagnant continuous phase have been carried out. The concentration of D2EHPA, zinc, and sulfuric acid as well as the diameter of the droplets are varied. The velocity of droplets is observed to be transient for several seconds. High mass-transfer rates increase the velocity of single droplets for the case of reactive extraction whereas for physical systems contrary behavior is observed. Therefore, droplets seem to behave principally different in reactive and physical extraction. This is explained by the interfacially active properties of D2EHPA. © 2009 American Institute of Chemical Engineers AIChE J, 2010 [source]


Ultrafast imaging: Principles, pitfalls, solutions, and applications

JOURNAL OF MAGNETIC RESONANCE IMAGING, Issue 2 2010
Jeffrey Tsao PhD
Abstract Ultrafast MRI refers to efficient scan techniques that use a high percentage of the scan time for data acquisition. Often, they are used to achieve short scan duration ranging from sub-second to several seconds. Alternatively, they may form basic components of longer scans that may be more robust or have higher image quality. Several important applications use ultrafast imaging, including real-time dynamic imaging, myocardial perfusion imaging, high-resolution coronary imaging, functional neuroimaging, diffusion imaging, and whole-body scanning. Over the years, echo-planar imaging (EPI) and spiral imaging have been the main ultrafast techniques, and they will be the focus of the review. In practice, there are important challenges with these techniques, as it is easy to push imaging speed too far, resulting in images of a nondiagnostic quality. Thus, it is important to understand and balance the trade-off between speed and image quality. The purpose of this review is to describe how ultrafast imaging works, the potential pitfalls, current solutions to overcome the challenges, and the key applications. J. Magn. Reson. Imaging 2010;32:252,266. © 2010 Wiley-Liss, Inc. [source]


Nanometre localization of single ReAsH molecules

JOURNAL OF MICROSCOPY, Issue 3 2004
H. PARK
Summary ReAsH is a red-emitting dye that binds to the unique sequence Cys-Cys-Xaa-Xaa-Cys-Cys (where Xaa is a noncysteine amino acid) in the protein. We attached a single ReAsH to a calmodulin with an inserted tetracysteine motif and immobilized individual calmodulins to a glass surface at low density. Total internal reflection fluorescence microscopy was used to image individual ReAsH molecules. We determined the centre of the distribution of photons in the image of a single molecule in order to determine the position of the dye within 5 nm precision and with an image integration time of 0.5 s. The photostability of ReAsH was also characterized and observation times ranging from several seconds to over a minute were observed. We found that 2-mercaptoethanesulphonic acid increased the number of collected photons from ReAsH molecules by a factor of two. Individual ReAsH molecules were then moved via a nanometric stage in 25 or 40 nm steps, either at a constant rate or at a Poisson-distributed rate. Individual steps were clearly seen, indicating that the observation of translational motion on this scale, which is relevant for many biomolecular motors, is possible with ReAsH. [source]


Fast two-dimensional detection for X-ray photon correlation spectroscopy using the PILATUS detector

JOURNAL OF SYNCHROTRON RADIATION, Issue 5 2009
Fabian Westermeier
The first X-ray photon correlation spectroscopy experiments using the fast single-photon-counting detector PILATUS (Paul Scherrer Institut, Switzerland) have been performed. The short readout time of this detector permits access to intensity autocorrelation functions describing dynamics in the millisecond range that are difficult to access with charge-coupled device detectors with typical readout times of several seconds. Showing no readout noise the PILATUS detector enables measurements of samples that either display fast dynamics or possess only low scattering power with an unprecedented signal-to-noise ratio. [source]


A simple and fast detection technique for arsenic speciation based on high-efficiency photooxidation and gas-phase chemiluminescence detection

LUMINESCENCE: THE JOURNAL OF BIOLOGICAL AND CHEMICAL LUMINESCENCE, Issue 5 2009
Junhai Xue
Abstract High-efficiency photooxidation (HEPO) and gas phase chemiluminescence detection (CL) combined with high-performance liquid chromatography (HPLC) and hydride generation were developed for speciation of As(III), As(V), monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA). After chromatography separation, the arsenic species were passed through HEPO which performed efficient photooxidation and converted MMA and DMA to As(V) in several seconds. Then the reaction of ozone and arsine upon hydride generation produced a CL signal as the analytical parameter. The total analytical process was completed within 10 min. The effects of operational parameters such as the concentrations of hydrochloric acid and NaBH4 solution, carrier gas flow and air gas flow for ozone generation were investigated. Detection limits were 3.7, 10.3, 10.2 and 10.0 µg/L for As(III), As(V), MMA and DMA, respectively. The recoveries of the four arsenic species in human urine sample ranged from 87 to 94%. Copyright © 2009 John Wiley & Sons, Ltd. [source]


Evidence for shutter-speed variation in CR bolus-tracking studies of human pathology

NMR IN BIOMEDICINE, Issue 3 2005
Thomas E. Yankeelov
Abstract The standard pharmacokinetic model for the analysis of MRI contrast reagent (CR) bolus-tracking (B-T) data assumes that the mean intracellular water molecule lifetime (,i) is effectively zero. This assertion is inconsistent with a considerable body of physiological measurements. Furthermore, theory and simulation show the B-T time-course shape to be very sensitive to the ,i magnitude in the physiological range (hundreds of milliseconds to several seconds). Consequently, this standard model aspect can cause significant underestimations (factors of 2 or 3) of the two parameters usually determined: Ktrans, the vascular wall CR transfer rate constant, and ve, the CR distribution volume (the extracellular, extravascular space fraction). Analyses of animal model data confirmed two predicted behaviors indicative of this standard model inadequacy: (1) a specific temporal pattern for the mismatch between the best-fitted curve and data; and (2) an inverse dependence of the curve's Ktrans and ve magnitudes on the CR dose. These parameters should be CR dose-independent. The most parsimonious analysis allowing for realistic ,i values is the ,shutter-speed' model. Its application to the experimental animal data essentially eliminated the two standard model signature inadequacies. This paper reports the first survey for the extent of this ,shutter-speed effect' in human data. Retrospective analyses are made of clinical data chosen from a range of pathology (the active multiple sclerosis lesion, the invasive ductal carcinoma breast tumor, and osteosarcoma in the leg) that provides a wide variation, particularly of Ktrans. The signature temporal mismatch of the standard model is observed in all cases, and is essentially eliminated by use of the shutter-speed model. Pixel-by-pixel maps show that parameter values from the shutter-speed analysis are increased by more than a factor of 3 for some lesion regions. This endows the lesions with very high contrast, and reveals heterogeneities that are often not seen in the standard model maps. Normal muscle regions in the leg allow validation of the shutter-speed model Ktrans, ve, and ,i magnitudes, by comparison with results of previous careful rat leg studies not possible for human subjects. Copyright © 2004 John Wiley & Sons, Ltd. [source]


Photo-induced improvement of radiative efficiency and structural changes in GaAsN alloys

PHYSICA STATUS SOLIDI (C) - CURRENT TOPICS IN SOLID STATE PHYSICS, Issue 6 2006
H. Yaguchi
Abstract We have investigated the excitation power density and nitrogen concentration dependence of the changes in the radiative efficiency of GaAsN alloys to examine the mechanism of the photo-induced improvement of radiative efficiency. With increasing excitation power density, the radiative efficiency increased more rapidly. The measure of the improvement Iafter/Ibefore superlinearly increased with increasing nitrogen concentration x up to ,1%. This suggests that the nonradiative recombination centers eliminated by photoexcitation are not defects formed by a single nitrogen atom but complexes formed by gathering of several nitrogen atoms. Micro Raman study revealed that the GaAs-like LO mode phonon peak intensity increased with photoexcitation time in a similar way to the increase in the radiative efficiency. Considering that this phenomenon is in a time scale of several seconds, the photo-induced structural changes correspond not to long range inter-diffusion but to local changes in atomic configuration which lead to the decrease in the density of nonradiative recombination centers. (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


Electrophysiological correlates of decreasing and increasing emotional responses to unpleasant pictures

PSYCHOPHYSIOLOGY, Issue 1 2009
Jason S. Moser
Abstract We examined event-related brain potential (ERP) modulations during the anticipation and processing of unpleasant pictures under instructions to cognitively decrease and increase negative emotion. Instructions to decrease and increase negative emotion modulated the ERP response to unpleasant pictures in the direction of emotional intensity beginning around 400 ms and lasting several seconds. Decrease, but not increase, instructions also elicited enhanced frontal negativity associated with orienting and preparation prior to unpleasant picture onset. Last, ERP modulation by unpleasant pictures began around 300 ms, just prior to regulation effects, suggesting that appraisal of emotion occurs before emotion regulation. Together, the current findings underscore the utility of ERPs in illuminating the time course of emotion modulation and regulation that may help to refine extant theoretical models. [source]


Brain oscillations forever , neurophysiology in future research of child psychiatric problems

THE JOURNAL OF CHILD PSYCHOLOGY AND PSYCHIATRY AND ALLIED DISCIPLINES, Issue 1-2 2009
Aribert Rothenberger
For decades neurophysiology has successfully contributed to research and clinical care in child psychiatry. Recently, methodological progress has led to a revival of interest in brain oscillations (i.e., a band of periodic neuronal frequencies with a wave-duration from milliseconds to several seconds which may code and decode information). These oscillations will nurture future information processing research during normal and pathological brain development, allowing us to investigate basic neuronal connectivity as well as interactions of brain systems and their modulation (e.g., by temporal neuronal synchronisation) as close correlates of behaviour and intermediate phenotypes from genes to behavioural variations. Especially, a systematic neurodynamic look at transitional processes from rest to stimulus-triggered goal-directed performance will aid behavioural understanding and guidance of children. Preliminary data suggest two separate oscillatory mechanisms in this respect. One is ongoing from pre- to post-stimulus processing and related to quantitative modification of behaviour, while another is merely related to qualitative effects of behaviour and reflects ,on-top' post-stimulus processing by temporal neuronal synchronisation of the oscillatory network in question. Suggested neurodynamic models may be tested in multilevel clinical experiments as well as in the framework of computational neuropsychiatry. [source]


Efficient repair mechanism of real-time broadcast services in hybrid DVB-SH and cellular systems

BELL LABS TECHNICAL JOURNAL, Issue 1 2009
Bessem Sayadi
In order to ensure good video quality and location-independent access to multimedia content, digital video broadcasting-satellite service to handhelds (DVB-SH) takes advantage of several innovative techniques. The major one is the forward error correction (FEC) scheme implemented at the link layer called multiprotocol encapsulation-inter-burst FEC (MPE-IFEC). MPE-IFEC supports reception in situations of long duration erasure spanning several consecutive time slice bursts (lasting several seconds) due to characteristics of the land mobile satellite channel which are easily hampered by obstacles such as trees, buildings, or overpasses. However, when deep signal fades last for larger durations, the MPE-IFEC correction capacity is insufficient and MPEIFEC fails, causing a service interruption. In this paper , we propose a repair mechanism and a suitable architecture for real-time streaming service error handling with reduced degrading effects such as picture freeze, video frame degradation, and video lag. Based on an analytical model of the performance of the MPE-IFEC, an iterative algorithm is proposed where the probability of recovery of lost bursts is computed and updated. The proposed algorithm controls the retransmission request on the cellular network. Simulation results show that by recovering only some specific lost bursts via the cellular path, the quality of experience here expressed in terms of burst error rate is improved. © 2009 Alcatel-Lucent. [source]