Home About us Contact | |||
Several Physiological Functions (several + physiological_function)
Selected AbstractsThe role of taurine in diabetes and the development of diabetic complicationsDIABETES/METABOLISM: RESEARCH AND REVIEWS, Issue 5 2001Svend Høime Hansen Abstract The ubiquitously found ,-amino acid taurine has several physiological functions, e.g. in bile acid formation, as an osmolyte by cell volume regulation, in the heart, in the retina, in the formation of N -chlorotaurine by reaction with hypochlorous acid in leucocytes, and possibly for intracellular scavenging of carbonyl groups. Some animals, such as the cat and the C57BL/6 mouse, have disturbances in taurine homeostasis. The C57BL/6 mouse strain is widely used in diabetic and atherosclerotic animal models. In diabetes, the high extracellular levels of glucose disturb the cellular osmoregulation and sorbitol is formed intracellularly due to the intracellular polyol pathway, which is suspected to be one of the key processes in the development of diabetic late complications and associated cellular dysfunctions. Intracellular accumulation of sorbitol is most likely to cause depletion of other intracellular compounds including osmolytes such as myo -inositol and taurine. When considering the clinical complications in diabetes, several links can be established between altered taurine metabolism and the development of cellular dysfunctions in diabetes which cause the clinical complications observed in diabetes, e.g. retinopathy, neuropathy, nephropathy, cardiomyopathy, platelet aggregation, endothelial dysfunction and atherosclerosis. Possible therapeutic perspectives could be a supplementation with taurine and other osmolytes and low-molecular compounds, perhaps in a combinational therapy with aldose reductase inhibitors. Copyright © 2001 John Wiley & Sons, Ltd. [source] Cocaine- and amphetamine-regulated transcript peptide (CART) is present in peptidergic C primary afferents and axons of excitatory interneurons with a possible role in nociception in the superficial laminae of the rat spinal cordEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 6 2007Márk Kozsurek Abstract Cocaine- and amphetamine-regulated transcript peptides (CART) have been implicated in the regulation of several physiological functions, including pain transmission. A dense plexus of CART-immunoreactive fibres has been described in the superficial laminae of the spinal cord, which are key areas in sensory information and pain processing. In this study, we used antibody against CART peptide, together with markers for various types of primary afferents, interneurons and descending systems to determine the origin of the CART-immunoreactive axons in the superficial laminae of the rat spinal cord. Calcitonin gene-related peptide (CGRP), a marker for peptidergic primary afferents in the dorsal horn, was present in 72.6% and 34.8% of CART-immunoreactive axons in lamina I and II, respectively. The majority of these fibres also contained substance P (SP), while a few were somatostatin (SOM)-positive. The other subpopulation of CART-immunoreactive boutons in lamina I and II also expressed SP and/or SOM without CGRP, but contained vesicular glutamate transporter 2, which is present mainly in excitatory interneuronal terminals. Our data demonstrate that the majority of CART-immunoreactive axons in the spinal dorsal horn originate from peptidergic nociceptive primary afferents, while the rest arise from excitatory interneurons that contain SP or SOM. This strongly suggests that CART peptide can affect glutamatergic neurotransmission as well as the release and effects of SP and SOM in nociception and other sensory processes. [source] The effect of ultraviolet B irradiation on nitric oxide synthase expression in murine keratinocytesEXPERIMENTAL DERMATOLOGY, Issue 6 2000M. Sasaki Abstract: Nitric oxide (NO), which has several physiological functions in skin, is generated by NO synthase (NOS). NOS has at least three isoforms; endothelial NOS (eNOS), brain NOS (bNOS), and inducible NOS (iNOS). Ultraviolet B (UVB) irradiation has been reported to stimulate NO production in skin via induction or activation of NOS, however, the exact mechanism of NOS induction by UVB irradiation remains obscure. In this study, we investigated the direct effect of UVB on the expression of NOS isoforms in murine keratinocytes, and found a significant increase in NO production within 48 h. mRNA and protein expressions of bNOS were both enhanced by UVB irradiation in murine keratinocytes, whereas iNOS mRNA expression was suppressed at 4 and 12 h after UVB irradiation. These results suggest that the enhancement of NO production observed after UVB irradiation in murine keratinocytes may be explained in part by the upregulation of bNOS expression, but not iNOS expression. [source] Carcinoembryonic antigen-related cell adhesion molecule (CEACAM)-binding recombinant polypeptide confers protection against infection by respiratory and urogenital pathogensMOLECULAR MICROBIOLOGY, Issue 5 2005Darryl J. Hill Summary The human-specific pathogens Neisseria meningitidis, N. gonorrhoea, Haemophilus influenzae and Moraxella catarrhalis share the property of targeting the carcinoembryonic antigen (CEA)-related cell adhesion molecules (CEACAMs) expressed on human epithelia. CEACAMs are signalling receptors implicated in cell adhesion and regulation of several physiological functions. Their targeting by pathogens can lead to tissue invasion. Although the CEACAM-binding ligands of the bacteria are structurally diverse, they target a common site on the receptor. We have generated a recombinant polypeptide that blocks the interactions of the mucosal pathogens with human epithelial cells and antibodies against it inhibit M. catarrhalis interactions with the receptor. As such, it is a potential antimicrobial agent to prevent infection via a strategy unlikely to promote bacterial resistance and a vaccine candidate against M. catarrhalis. In addition, it could serve more widely as a novel research tool and as a potential therapeutic agent in CEACAM-based physiological disorders. [source] Release of ATP in the central nervous system during systemic inflammation: real-time measurement in the hypothalamus of conscious rabbitsTHE JOURNAL OF PHYSIOLOGY, Issue 1 2007Alexander V. Gourine Receptors for extracellular ATP (both ionotropic and metabotropic) are widely expressed in the CNS both in neurones and glia. ATP can modulate neuronal activity in many parts of the brain and contributes to the central nervous control of several physiological functions. Here we show that during the systemic inflammatory response the extracellular concentrations of ATP increase in the anterior hypothalamus and this has a profound effect on the development of the thermoregulatory febrile response. In conscious rabbits we measured ATP release in real time with novel amperometric biosensors and monitored a marked increase in the concentration of ATP (4.0 ± 0.7 ,m) in the anterior hypothalamus in response to intravenous injection of bacterial endotoxin , lipopolysaccharide (LPS). No ATP release was observed in the posterior hypothalamus. The release of ATP coincided with the development of the initial phase of the febrile response, starting 18 ± 2 min and reaching its peak 45 ± 2 min after LPS injection. Application of the ATP receptor antagonists pyridoxal-5,-phosphate-6-azophenyl-2,,4,-disulphonic acid, Brilliant Blue G or periodate oxidized ATP dialdehyde to the site of ATP release in the anterior hypothalamus markedly augmented and prolonged the febrile response. These data indicate that during the development of the systemic inflammation, ATP is released in the anterior hypothalamus to limit the magnitude and duration of fever. This release may also have a profound effect on the hypothalamic control of other physiological functions in which ATP and related purines have been implicated to play modulatory roles, such as food intake, hormone secretion, cardiovascular activity and sleep. [source] Uncoupling proteins: A complex journey to function discoveryBIOFACTORS, Issue 5 2009Federica Cioffi Abstract Since their discovery, uncoupling proteins have aroused great interest due to the crucial importance of energy-dissipating system for cellular physiology. The uncoupling effect and the physiological role of UCP1 (the first-described uncoupling protein) are well established. However, the reactions catalyzed by UCP1 homologues (UCPs), and their physiological roles are still under debate, with the literature containing contrasting results. Current hypothesis propose several physiological functions for novel UCPs, such as: (i) attenuation of reactive oxygen species production and protection against oxidative damage, (ii) thermogenic function, although UCPs do not generally seem to affect thermogenesis, UCP3 can be thermogenic under certain conditions, (iii) involvement in fatty acid handling and/or transport, although recent experimental evidence argues against the previously hypothesized role for UCPs in the export of fatty acid anions, (iv) fatty acid hydroperoxide export, although this function, due to the paucity of the experimental evidence, remains hypothetical, (v) Ca2+ uptake, although results for and against a role in Ca2+ uptake are still emerging, (vi) a signaling role in pancreatic beta cells, where it attenuates glucose-induced insulin secretion. From the above, it is evident that more research will be needed to establish universally accepted functions for UCPs. © 2009 International Union of Biochemistry and Molecular Biology, Inc. [source] Die vielen Seiten des Sulfids.BIOLOGIE IN UNSERER ZEIT (BIUZ), Issue 5 2009Tödlich und doch lebensnotwendig Abstract Schwefelwasserstoff ist äußerst giftig und hat dennoch zahlreiche physiologische Funktionen. Tiere aus sulfidhaltigen Lebensräumen können sich effektiv vor einer Sulfidvergiftung schützen und nutzen diese reduzierte Schwefelverbindung sogar als Energielieferant. Das reichhaltige Leben an den Hydrothermalquellen der Tiefsee basiert vollständig auf der Oxidation anorganischer Substanzen, wobei Sulfid eines der Hauptsubstrate ist. Für den Menschen spielt Sulfid als gasförmiges Signalmolekül eine wichtige Rolle. Es wird in vielen Geweben produziert und ist an einigen entscheidenden Stoffwechselvorgängen, wie beispielsweise der Regulation des Blutdrucks und der Insulinsekretion beteiligt. Störungen des Schwefelstoffwechsels führen zu verschiedenen Erkrankungen, so dass die genaue Kenntnis der Umsetzung und Wirkungsweisen von Sulfid medizinisch von großem Interesse ist. Hydrogen sulfide is highly toxic, but nevertheless it has several physiological functions. Animals from sulfide containing habitats are able to protect themselves from sulfide poisoning and furthermore use this reduced sulfur compound for ATP production. Life at the deep-sea hydrothermal vents entirely depends on the oxidation of inorganic substrates, mainly sulfide. In humans sulfide acts as a gaseous signalling molecule. It is produced in many tissues and takes part in a number of important metabolic processes such as the regulation of blood pressure and insulin secretion. Several severe diseases are caused by dysfunctions in sulfur metabolism. Thus, a detailed knowledge of the reactions and effects of hydrogen sulfide is of considerable clinical relevance. [source] |