Home About us Contact | |||
Several Orders (several + order)
Selected AbstractsComparative and functional morphology of wing coupling structures in Trichoptera: AnnulipalpiaJOURNAL OF MORPHOLOGY, Issue 2 2010Ian C. StocksArticle first published online: 20 AUG 200 Abstract Several orders of morphologically four-winged insects have evolved mechanisms that enforce a union between the mesothoracic and metathoracic wings (forewings and hindwings) during the wing beat cycle. Such mechanisms result in a morphologically tetrapterous insect flying as if it were functionally dipterous, and these mechanisms have been described for several insect orders. The caddisfly suborders Annulipalpia and Integripalpia (Trichoptera) each have evolved a wing coupling apparatus, with at least three systems having evolved within the suborder Annulipalpia. The comparative and inferred functional morphology of the putative wing coupling mechanisms is described for the annulipalpian families Hydropsychidae (subfamilies Macronematinae and Hydropsychinae), Polycentropodidae and Ecnomidae, and a novel form-functional complex putatively involved with at-rest forewing-forewing coupling is described for Hydropsychidae: Smicrideinae. It is proposed that the morphology of the wing coupling apparatuses of Hydropsychinae and Macronematinae are apomorphies for those clades. J. Morphol. 2009. © 2009 Wiley-Liss, Inc. [source] Dispersion of Dust Acoustic Modes and Perturbations of Plasma Flux BalanceCONTRIBUTIONS TO PLASMA PHYSICS, Issue 3 2007V. Tsytovich Abstract Previous considerations of dust acoustic waves is demonstrated to be inconsistent - the required equilibrium state for perturbations was not defined since balance of plasma fluxes was neglecting. The self-consistent treatment shows that plasma flux perturbations are accompanying any collective waves propagating in dusty plasmas and can play an important role in wave dispersion, wave damping and can create instabilities. This is illustrated by the derivation of dispersion relation for dust acoustic modes taking into account the plasma flux balances and plasma flux perturbations by waves. The result of this approach shows that the dust acoustic waves with linear dependence of wave frequency on the wave number exist only in restricted range of the wave numbers. Only for wave numbers larger than some critical wave number for low frequency modes the frequency can be have approximately a linear dependence on wave number and can be called as dust acoustic wave but the phase velocity of these waves is different from that which can be obtained neglecting the flux balance and depends on grain charge variations which are determined by the balance of fluxes. The presence of plasma fluxes previously neglected is the main typical feature of dusty plasmas. The dispersion relation in the range of small wave numbers is found to be mainly determined by the change of the plasma fluxes and is quite different from that of dust acoustic type, namely it is found to have the same form as the well known dispersion relation for the gravitational instability. This result proves in general way the existence of the collective grain attractions of negatively charged grains for for large distances between them and for any source of ionization. The attraction of grains found from dispersion relation of the dust acoustic branch coincides with that found previously for pair grain interactions using some models for the ionization source. For the existing experiments the effective Jeans length for such attraction is estimated to be about 8 , 10 times larger than the ion Debye length and the effective gravitational constant for the grain attraction is estimated to be several orders of magnitude larger than the usual gravitational constant. The grain attraction at large inter-grain distances described by the gravitationlike grain instability is considered as the simplest explanation for observed dust cloud clustering, formation of dust structures including the plasma crystals. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] Rapid crystal growth without inherent supersaturation induced by nanoscale fluid flows?CRYSTAL RESEARCH AND TECHNOLOGY, Issue 1 2006M. J. Jones Abstract Crystal growth is a process that only takes place under non-equilibrium conditions and a necessary prerequisite is that the crystal is exposed to a phase that is supersaturated in the material the crystal is composed of, be it a solution, a vapour or a supercooled melt. In industrial mass crystallization the growth rate for a population of crystals (in suspension growth processes [1]) rarely exceeds mean linear velocities of 10 -7 ms -1. Here we present a mass crystallization process which is accompanied by rapid crystal growth several orders of magnitude faster and into a region of solution that is without inherent supersaturation. The material investigated is a solid hydrate that exhibits a solution mediated phase transition to its anhydrous form in the presence of methanol [2]. The phase transition is initiated simply by placing an amount of hydrate crystals into the solvent and is characterized by the rapid emergence of needle-shaped crystals. The needles emanate from the crystal faces of the hydrate crystals and grow into the solution, which is nominally free of the substance to be crystallized. The high growth rate of the crystals, which of the order of up to 10 -4 ms -1 is surprising. Although rapid needle growth has been observed before [3-9], to date a satisfactory explanation for needles growing under the abovementioned conditions is still outstanding. Based upon the topology of the crystals we propose a tentative mechanism for this phenomenon capable of explaining the unusually rapid growth and highlight those questions that need addressing in order to verify this mechanism. X-ray powder diffraction is used to characterize the crystal phase of the needles; confocal fluorescence microscopy reveals that the needles are hollow. The width of these needles is between 0.5 and 5 ,m, their length appears to be limited only by the amount of hydrate available for their formation. (© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source] Estimation of Ion-Pairing Constants in Plasticized Poly(vinyl chloride) Membranes Using Segmented Sandwich Membranes TechniqueELECTROANALYSIS, Issue 17-18 2009Vladimir Abstract Segmented sandwich membrane method was used to determine ion-pairing constants for four cationic sites: tris-(2,3,4-dodecyloxy)benzenetrimethylammonium, tris-(2,3,4-dodecyloxy)benzenedimethyloctylammonium, tris-(2,3,4-dodecyloxy)benzenemethyldioctylammonium, and dimethyldioctadecylammonium with chloride, bromide, nitrate, benzene sulfonate, trichloroacetate, thiocyanate, perchlorate and picrate, as well as ion-pairing constants for two anionic sites: tetraphenylborate and tris-(2,3,4-octyloxy)benzenesulfonate with dimedrol, quinine, anapriline, and amantadine cations in poly(vinyl chloride) membranes plasticized with 2-nitrophenyl octyl ether. Ion association constants of anions with quaternary ammonium sites regularly increase from picrate to chloride along with reduction of the anion radius and with improvement of site exchanger center steric accessibility. Ion association constants of amine cations with tris-(2,3,4-octyloxy)benzenesulfonate are several orders higher than those with tetraphenylborate and regularly increase from tertiary amine to primary one. [source] Pseudomonas fluorescens' view of the periodic tableENVIRONMENTAL MICROBIOLOGY, Issue 1 2008Matthew L. Workentine Summary Growth in a biofilm modulates microbial metal susceptibility, sometimes increasing the ability of microorganisms to withstand toxic metal species by several orders of magnitude. In this study, a high-throughput metal toxicity screen was initiated with the aim of correlating biological toxicity data in planktonic and biofilm cells to the physiochemical properties of metal ions. To this end, Pseudomonas fluorescens ATCC 13525 was grown in the Calgary Biofilm Device (CBD) and biofilms and planktonic cells of this microorganism were exposed to gradient arrays of different metal ions. These arrays included 44 different metals with representative compounds that spanned every group of the periodic table (except for the halogens and noble gases). The minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC) and minimum biofilm eradication concentration (MBEC) values were obtained after exposing the biofilms to metal ions for 4 h. Using these values, metal ion toxicity was correlated to the following ion-specific physicochemical parameters: standard reduction-oxidation potential, electronegativity, the solubility product of the corresponding metal,sulfide complex, the Pearson softness index, electron density and the covalent index. When the ions were grouped according to outer shell electron structure, we found that heavy metal ions gave the strongest correlations to these parameters and were more toxic on average than the other classes of the ions. Correlations were different for biofilms than for planktonic cells, indicating that chemical mechanisms of metal ion toxicity differ between the two modes of growth. We suggest that biofilms can specifically counter the toxic effects of certain physicochemical parameters, which may contribute to the increased ability of biofilms to withstand metal toxicity. [source] Stability Constants and Dissociation Rates of the EDTMP Complexes of Samarium(III) and Yttrium(III)EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, Issue 30 2008Ferenc Krisztián Kálmán Abstract The stability constants of Sm(EDTMP) (log,KML = 20.71) and Y(EDTMP) (log,KML = 19.19) were determined by a competition reaction between the Ln3+ ion (Ln3+ = Sm3+ or Y3+) and Cu2+ for the EDTMP ligand by spectrophotometry at pH , 10, in the presence of an excess amount of citrate (0.15 M NaCl, 25 °C). For determining the stability constants of Cu(EDTMP) (log,KML = 19.36) and Ca(EDTMP) (log,KML = 8.71) pH,potentiometry was used. In the pH range 4,9 the EDTMP complexes are present in the form of nonprotonated and mono-, di- and triprotonated species. The Ca2+ ion forms a dinuclear complex with Ln(EDTMP). In a simplified blood plasma model consisting of Sm3+, Ca2+ and Zn2+ metal ions, EDTMP, citrate, cysteine and histidine ligands, Sm3+ is practically present in the form of [Sm(HEDTMP)Ca]2,, whereas Zn2+ predominantly forms [Zn(HEDTMP)]5, and [Zn(H2EDTMP)]4, complexes. For studying the dissociation rates of the complexes, the kinetics of the metal exchange (transmetallation) reactions between the Ln(EDTMP) complexes and Cu2+,citrate were investigated in the pH range 7,9 by the stopped-flow method. The rates of the exchange reactions are independent of the Cu2+ concentration and increase with the H+ concentration. The rate constants, characterizing the proton-assisted dissociation of the Ln(EDTMP) complexes, are several orders of magnitude higher than those of the similar Ln(EDTA) complexes, because the protonation constants of Ln(EDTMP) are high and the protonated Ln(HEDTMP) and Ln(H2EDTMP) species are present in higher concentration. The half-times of dissociation of Sm(EDTMP) and Y(EDTMP) at pH = 7.4 and 25 °C are 4.9 and 7.5 s, respectively. These relatively short dissociation half-time values do not predict the deposition of Ln3+ ions in bones in the form of intact Ln(EDTMP) complexes. It is more probable that sorption of the EDTMP ligand and Sm3+ or Y3+ ions occurs independently after the dissociation of complexes.(© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2008) [source] A strategy for correlative microscopy of large skin samples: towards a holistic view of axillary skin complexityEXPERIMENTAL DERMATOLOGY, Issue 1 2008Katrin Wilke Abstract:, Knowledge about the structural elements of skin and its appendices is an essential prerequisite for understanding their complex functions and interactions. The hence necessary morphological description across several orders of scale not only requires the investigation at the light microscopic level but also ultrastructural investigation, ideally on the identical sample. For a correlative and multimodal observation one unique preparation protocol is mandatory. As a compromise between sample sizes of >500 ,m in diameter on the one hand and optimal preservation of antigenicity and morphology on the other, we developed a new preparation protocol that allows (i) 3D reconstruction of the resin-embedded sample by confocal light microscopy prior to (ii) direct immunolocalization of target proteins within selected sample planes by light and fluorescence microscopy or transmission electron microscopy. Alternatively, (iii) serial cryosections of the frozen sample can be taken for characterizing the sample in toto. With this unique approach we were able to fully demonstrate the structural complexity of axillary skin samples, increasing the structural resolution from 3D reconstruction of the whole gland up to ultrastructural investigations at the subcellular level. We could demonstrate that axillary sweat glands are not separately distributed, as has been assumed to date; instead, they seem to be intricately twisted into one another. This promotes the concept of a complex axillary sweat gland organ instead of single sweat gland entities. [source] Fisheries of two tropical lagoons in Ghana, West AfricaFISHERIES MANAGEMENT & ECOLOGY, Issue 6 2004H. R. Dankwa Abstract, The fisheries of two coastal lagoons, Keta and Songor, were studied as part of Ghana Coastal Wetlands Management Project (GCWMP) aimed at sustainable exploitation of wetland resources. Fish samples were obtained with seine nets and cast net as well as from local fishermen. Water quality parameters (pH, dissolved oxygen, temperature and turbidity) were similar in the two lagoons, except for salinity, which was significantly different (P < 0.001). Despite their close geographical proximity, the two lagoons supported different fish assemblages with the blackchin tilapia, Sarotherodon melanotheron Rüppell, and the redchin tilapia, Tilapia guineensis (Bleeker), being the most important commercial fishes in both lagoons. The number of individuals for each species in Songor Lagoon were far more abundant, with densities several orders of magnitude higher than in Keta Lagoon. However, both species were significantly larger (P < 0.01) in the latter [15,121 and 25,157 mm standard length (SL)] than in the former lagoon (30,102 and 15,95 mm SL) for S. melanotheron and T. guineensis respectively. Over-fishing, use of small-size mesh nets, limited mixing of marine and fresh water were some of the factors limiting fish production in both lagoons. [source] Aminopeptidase and phosphatase activities in basins of Lake Hiidenvesi dominated by cyanobacteria and in laboratory grown AnabaenaFRESHWATER BIOLOGY, Issue 9 2002JAANA VAITOMAA 1.,Extracellular enzyme activities were examined in freshwater basins representing a transition from hypertrophy to mesotrophy and in axenic cyanobacterial cultures to evaluate the ecological role of extracellular enzyme activities of cyanobacteria. 2.,Aminopeptidase activity was related to the trophic status of the lake basins. The activity was highest in the most eutrophic basin and decreased in the less nutrient-rich basins. Cyanobacteria were the most important autotrophic organisms and aminopeptidase activity was positively associated with cyanobacterial biomass. 3.,In an axenic Anabaena batch culture, nitrogenase activity was several orders of magnitude higher than leucine aminopeptidase activity. Nitrate did not have an effect on aminopeptidase activity or growth, but significantly reduced the rate of nitrogen fixation. A high phosphorus concentration at the beginning of the Anabaena batch-culture experiment resulted in reduced phosphatase activity. 4.,In Lake Hiidenvesi, aminopeptidase activity probably originated mostly from attached bacteria and less so from cyanobacteria. [source] NMR Studies of Proton Transport in Anhydrous Polymer Electrolytes for High Temperature Fuel Cells,FUEL CELLS, Issue 3-4 2008H. A. Every Abstract This paper presents an NMR study of the dynamic processes related to proton transport in a new polymer consisting of two blocks , poly(2,6-diphenylphenol) (P3O) and an imidazole functionalised poly(2,6-dimethylphenol) (imi-PPE) , and subsequently doped with polyphosphoric acid (PPA). From 1H and 31P NMR relaxation and diffusion measurements of the individual homopolymers and block copolymer, it was observed that addition of PPA significantly enhanced the mobility of imi-PPE and the imi-block copolymer, but not of P3O. The similarity in 1H T2 values between imi-PPE and the imi-block copolymer suggests that the relaxation behaviour in the block copolymer is dominated by the imi-PPE phase. 1H diffusion in P3O and the imi-block copolymer were comparable to pure PPA, suggesting that the proton diffusion is similar in each case. For imi-PPE, the diffusion coefficients were several orders of magnitude lower, reflecting a restricted diffusion process that is not indicative of the proton mobility. For all three polymers, the 31P T2 relaxation behaviour and inability to measure 31P diffusion coefficients imply hindered translational motion of the phosphonate groups. From these results, it can be concluded that hydrogen bonds between the phosphoric acid and the polymer form a network that facilitates proton transport via a hopping mechanism. [source] Controllable Molecular Doping and Charge Transport in Solution-Processed Polymer Semiconducting LayersADVANCED FUNCTIONAL MATERIALS, Issue 12 2009Yuan Zhang Abstract Here, controlled p-type doping of poly(2-methoxy-5-(2,-ethylhexyloxy)- p -phenylene vinylene) (MEH-PPV) deposited from solution using tetrafluoro-tetracyanoquinodimethane (F4-TCNQ) as a dopant is presented. By using a co-solvent, aggregation in solution can be prevented and doped films can be deposited. Upon doping the current,voltage characteristics of MEH-PPV-based hole-only devices are increased by several orders of magnitude and a clear Ohmic behavior is observed at low bias. Taking the density dependence of the hole mobility into account the free hole concentration due to doping can be derived. It is found that a molar doping ratio of 1 F4-TCNQ dopant per 600 repeat units of MEH-PPV leads to a free carrier density of 4,×,1022,m,3. Neglecting the density-dependent mobility would lead to an overestimation of the free hole density by an order of magnitude. The free hole densities are further confirmed by impedance measurements on Schottky diodes based on F4-TCNQ doped MEH-PPV and a silver electrode. [source] Connecting Atmosphere and Wetland: Trace Gas ExchangeGEOGRAPHY COMPASS (ELECTRONIC), Issue 2 2009Peter M. Lafleur This article reviews the exchange of carbon dioxide (CO2) and methane (CH4) gases between wetland and atmosphere, with a primary emphasis on ecosystem-scale fluxes and their environmental controls. It is intended to complement a previous review of wetland energy and water exchanges (Lafleur 2008). It is shown that wetland exchanges of these gases are greatly variable in space and time, especially CH4. Most wetlands appear to be sinks for atmospheric CO2, while almost all are emitters of CH4. The strongest environmental control on the CO2 flux is drought, which often determines whether a wetland will be a net sink or source for atmospheric CO2. Due to complex biochemistry and transport mechanisms, methane efflux from wetlands often ranges over several orders of magnitude within a single wetland and among wetlands, making it difficult to quantify the environmental controls on this flux. The magnitude of gas fluxes is not strongly related to wetland type, which implies that modelling of these fluxes should consider wetlands a continuum and attempt to address processes as they vary along this continuum instead of as discrete entities. Although more research is required into the magnitude, variation and controls on trace gas fluxes in all wetland types, some wetlands (tropical and temperate marshes) are particularly understudied. [source] Near-lithostatic pore pressure at seismogenic depths: a thermoporoelastic modelGEOPHYSICAL JOURNAL INTERNATIONAL, Issue 3 2006Francesca Zencher SUMMARY A model is presented for pore pressure migration through a transition layer separating a meteoric aquifer at hydrostatic pressure from a deeper reservoir at lithostatic pressure. This configuration is thought to be pertinent to the South Iceland seismic zone (SISZ) and to other tectonically active regions of recent volcanism, where volatiles are continuously released by ascending magma below the brittle,ductile transition. Poroelastic parameters are computed for basaltic rock. The model is 1-D, the fluid viscosity is temperature dependent and rock permeability is assumed to be pressure dependent according to a dislocation model of a fractured medium. Environment conditions are considered, pertinent to basalt saturated with water at shallow depth (case I) and at mid-crustal depth (case II). If the intrinsic permeability of the rock is high, no significant effects are observed in the pressure field but advective heat transfer shifts the brittle,ductile transition to shallower depths. If the intrinsic permeability is low, the pressure-dependent permeability can propagate near-lithostatic pore pressures throughout most of the transition layer, while the temperature is practically unaffected by advective contributions so that the rock in the transition layer remains in brittle condition. Geometrical parameters characterizing the fracture distribution are important in determining the effective permeability: in particular, if an interconnected system of fractures develops within the transition layer, the effective permeability may increase by several orders of magnitude and near-lithostatic pore pressure propagates upwards. These modelling results have important bearings on our understanding of seismogenic processes in geothermal areas and are consistent with several geophysical observations in the SISZ, in connection with the two 2000 June M= 6.5 earthquakes, including: (i) fluid pressure pulses in deep wells, (ii) low resistivity at the base of the seismogenic layer, (iii) low VP/VS ratio and time-dependent seismic tomography, (iv) heterogeneity of focal mechanisms, (v) shear wave splitting, (vi) high b -value of deep foreshocks, (vii) triggered seismicity and (viii) Radon anomalies. [source] Water availability controls microbial temperature responses in frozen soil CO2 productionGLOBAL CHANGE BIOLOGY, Issue 11 2009MATS G. ÖQUIST Abstract Soil processes in high-latitude regions during winter are important contributors to global carbon circulation, but our understanding of the mechanisms controlling these processes is poor and observed temperature response coefficients of CO2 production in frozen soils deviate markedly from thermodynamically predicted responses (sometimes by several orders of magnitude). We investigated the temperature response of CO2 production in 23 unfrozen and frozen surface soil samples from various types of boreal forests and peatland ecosystems and also measured changes in water content in them after freezing. We demonstrate that deviations in temperature responses at subzero temperatures primarily emanates from water deficiency caused by freezing of the soil water, and that the amount of unfrozen water is mainly determined by the quality of the soil organic matter, which is linked to the vegetation cover. Factoring out the contribution of water limitation to the CO2 temperature responses yields response coefficients that agree well with expectations based on thermodynamic theory concerning biochemical temperature responses. This partitioning between a pure temperature response and the effect of water availability on the response of soil CO2 production at low temperatures is crucial for a thorough understanding of low-temperature soil processes and for accurate predictions of C-balances in northern terrestrial ecosystems. [source] Controlled Release of Perfumery Alcohols by Neighboring-Group Participation.HELVETICA CHIMICA ACTA, Issue 8 20032-(Hydroxymethyl)-, 2-Carbamoylbenzoates, Comparison of the Rate Constants for the Alkaline Hydrolysis of 2-Acyl- A series of 2-acylbenzoates 1 and 2, 2-(hydroxymethyl)benzoates 3, 2-carbamoylbenzoates 4,6, as well as the carbamoyl esters 7 or 8 of maleate or succinate, respectively (see Fig.,2), were prepared in a few reaction steps, and the potential use of these compounds as chemical delivery systems for the controlled release of primary, secondary, and tertiary fragrance alcohols was investigated. The rate constants for the neighboring-group-assisted alkaline ester hydrolysis were determined by anal. HPLC in buffered H2O/MeCN solution at different pH (Table,1). The rates of hydrolysis were found to depend on the structure of the alcohol, together with the precursor skeleton and the structure of the neighboring nucleophile that attacks the ester function. Primary alcohols were released more rapidly than secondary and tertiary alcohols, and benzoates of allylic primary alcohols (e.g., geraniol) were hydrolyzed 2,4 times faster than their homologous saturated alcohols (e.g., citronellol). For the same leaving alcohol, 2-[(ethylamino)carbonyl]benzoates cyclized faster than the corresponding 2-(hydroxymethyl)benzoates, and much faster than their 2-formyl and 2-acetyl analogues (see, e.g., Fig.,4). Within the carbamoyl ester series, 2-[(ethylamino)carbonyl]benzoates were found to have the highest rate constants for the alkaline ester hydrolysis, followed by unsubstituted 2-(aminocarbonyl)benzoates, or the corresponding isopropyl derivatives. To rationalize the influence of the different structural changes on the hydrolysis kinetics, the experimental data obtained for the 2-[(alkylamino)carbonyl]benzoates were compared with the results of density-functional computer simulations (Table,2 and Scheme,4). Based on a preliminary semi-empirical conformation analysis, density-functional calculations at the B3LYP/6-31G** level were carried out for the starting precursor molecules, several reaction intermediates, and the cyclized phthalimides. For the same precursor skeleton, these simple calculations were found to model the experimental data correctly. With an understanding of the influence of structural parameters on the rate constants obtained in this work, it is now possible to influence the rates of hydrolysis over several orders of magnitude, to design tailor-made precursors for a large variety of fragrance alcohols, and to predict their efficiency as controlled-release systems in practical applications. [source] Chemical Nanosensors Based on Composite Molecularly Imprinted Polymer Particles and Surface-Enhanced Raman ScatteringADVANCED MATERIALS, Issue 21 2010Marc Bompart Chemical nanosensors with a submicrometer core,shell composite design, based on a polymer core, a molecularly imprinted polymer (MIP) shell for specific analyte recognition, and an interlayer of gold nanoparticles for signal amplification, are described. SERS measurements on single nanosensors yield detection limits of 10,7,M for the , -blocker propranolol, several orders of magnitude lower than on plain MIP spheres. [source] Glyconanomaterials: Synthesis, Characterization, and Ligand PresentationADVANCED MATERIALS, Issue 17 2010Xin Wang Abstract Glyconanomaterials, nanomaterials carrying surface-tethered carbohydrate ligands, have emerged and demonstrated increasing potential in biomedical imaging, therapeutics, and diagnostics. These materials combine the unique properties of nanometer-scale objects with the ability to present multiple copies of carbohydrate ligands, greatly enhancing the weak affinity of individual ligands to their binding partners. Critical to the performance of glyconanomaterials is the proper display of carbohydrate ligands, taking into consideration of the coupling chemistry, the type and length of the spacer linkage, and the ligand density. This article provides an overview of the coupling chemistry for attaching carbohydrate ligands to nanomaterials, and discusses the need for thorough characterization of glyconanomaterials, especially quantitative analyses of the ligand density and binding affinities. Using glyconanoparticles synthesized by a versatile photocoupling chemistry, methods for determining the ligand density by colorimetry and the binding affinity with lectins by a fluorescence competition assay are determined. The results show that the multivalent presentation of carbohydrate ligands significantly enhances the binding affinity by several orders of magnitude in comparison to the free ligands in solution. The effect is sizeable even at low surface ligand density. The type and length of the spacer linkage also affect the binding affinity, with the longer linkage promoting the association of bound ligands with the corresponding lectins. [source] Concentration,discharge relationships reflect chemostatic characteristics of US catchmentsHYDROLOGICAL PROCESSES, Issue 13 2009Sarah E. Godsey Abstract Concentration,discharge relationships have been widely used as clues to the hydrochemical processes that control runoff chemistry. Here we examine concentration,discharge relationships for solutes produced primarily by mineral weathering in 59 geochemically diverse US catchments. We show that these catchments exhibit nearly chemostatic behaviour; their stream concentrations of weathering products such as Ca, Mg, Na, and Si typically vary by factors of only 3 to 20 while discharge varies by several orders of magnitude. Similar patterns are observed at the inter-annual time scale. This behaviour implies that solute concentrations in stream water are not determined by simple dilution of a fixed solute flux by a variable flux of water, and that rates of solute production and/or mobilization must be nearly proportional to water fluxes, both on storm and inter-annual timescales. We compared these catchments' concentration,discharge relationships to the predictions of several simple hydrological and geochemical models. Most of these models can be forced to approximately fit the observed concentration,discharge relationships, but often only by assuming unrealistic or internally inconsistent parameter values. We propose a new model that also fits the data and may be more robust. We suggest possible tests of the new model for future studies. The relative stability of concentration under widely varying discharge may help make aquatic environments habitable. It also implies that fluxes of weathering solutes in streams, and thus fluxes of alkalinity to the oceans, are determined primarily by water fluxes. Thus, hydrology may be a major driver of the ocean-alkalinity feedback regulating climate change. Copyright © 2009 John Wiley & Sons, Ltd. [source] Post-wildfire changes in suspended sediment rating curves: Sabino Canyon, ArizonaHYDROLOGICAL PROCESSES, Issue 11 2007Sharon L. E. Desilets Abstract Wildfire has been shown to increase erosion by several orders of magnitude, but knowledge regarding short-term variations in post-fire sediment transport processes has been lacking. We present a detailed analysis of the immediate post-fire sediment dynamics in a semi-arid basin in the southwestern USA based on suspended sediment rating curves. During June and July 2003, the Aspen Fire in the Coronado National Forest of southern Arizona burned an area of 343 km2. Surface water samples were collected in an affected watershed using an event-based sampling strategy. Sediment rating parameters were determined for individual storm events during the first 18 months after the fire. The highest sediment concentrations were observed immediately after the fire. Through the two subsequent monsoon seasons there was a progressive change in rating parameters related to the preferential removal of fine to coarse sediment. During the corresponding winter seasons, there was a lower supply of sediment from the hillslopes, resulting in a time-invariant set of sediment rating parameters. A sediment mass-balance model corroborated the physical interpretations. The temporal variability in the sediment rating parameters demonstrates the importance of storm-based sampling in areas with intense monsoon activity to characterize post-fire sediment transport accurately. In particular, recovery of rating parameters depends on the number of high-intensity rainstorms. These findings can be used to constrain rapid assessment fire-response models for planning mitigation activities. Copyright © 2006 John Wiley & Sons, Ltd. [source] Efficiency of boundary element methods for time-dependent convective heat diffusion at high Peclet numbersINTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN BIOMEDICAL ENGINEERING, Issue 4 2005M. M. Grigoriev Abstract A higher-order boundary element method (BEM) recently developed by the current authors (Comput Methods Appl Mech Eng 2003; 192: 4281,4298; 4299,4312; 4313,4335) for time-dependent convective heat diffusion in two-dimensions appears to be a very attractive tool for efficient simulations of transient linear flows. However, the previous BEM formulation is restricted to relatively small time step sizes (i.e. ,t,4,/V2) owing to the convergence issues of the time series for the kernel representation within a time interval. This paper extends the boundary element formulation in a way to allow time step sizes several orders of magnitude larger than in the previous approach. We consider an example problem of thermal propagation, and investigate the accuracy and efficiency of BEM formulations for Peclet numbers in the range from 103 to 105. Copyright © 2005 John Wiley & Sons, Ltd. [source] A pseudospectral Fourier method for a 1D incompressible two-fluid modelINTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, Issue 6 2008H. Holmĺs Abstract This paper presents an accurate and efficient pseudospectral (PS) Fourier method for a standard 1D incompressible two-fluid model. To the knowledge of the authors, it is the first PS method developed for the purpose of modelling waves in multiphase pipe flow. Contrary to conventional numerical methods, the PS method combines high accuracy and low computational costs with flexibility in terms of handling higher order derivatives and different types of partial differential equations. In an effort to improve the description of the stratified wavy flow regime, it can thus serve as a valuable tool for testing out new two-fluid model formulations. The main part of the algorithm is based on mathematical reformulations of the governing equations combined with extensive use of fast Fourier transforms. All the linear operations, including differentiations, are performed in Fourier space, whereas the nonlinear computations are performed in physical space. Furthermore, by exploiting the concept of an integrating factor, all linear parts of the problem are integrated analytically. The remaining nonlinear parts are advanced in time using a Runge,Kutta solver with an adaptive time step control. As demonstrated in the results section, these steps in sum yield a very accurate, fast and stable numerical method. A grid refinement analysis is used to compare the spatial convergence with the convergence rates of finite difference (FD) methods of up to order six. It is clear that the exponential convergence of the PS method is by far superior to the algebraic convergence of the FD schemes. Combined with the fact that the scheme is unconditionally linearly stable, the resulting increase in accuracy opens for several orders of magnitude savings in computational time. Finally, simulations of small amplitude, long wavelength sinusoidal waves are presented to illustrate the remarkable ability of the PS method to reproduce the linear stability properties of the two-fluid model. Copyright © 2008 John Wiley & Sons, Ltd. [source] Controlling Electrical Properties of Conjugated Polymers via a Solution-Based p-Type Doping,ADVANCED MATERIALS, Issue 17 2008Keng-Hoong Yim Tetrafluoro-tetracyano-quinodimethane (F4TCNQ) is used to p-dope conjugated polymers with a wide range of the HOMO levels via co-blending in a common organic solvent. Doping results in several orders of magnitude increase in the bulk conductivity and hole-current with reduced turn-on voltage. The effectiveness of doping increases as the HOMO level of the polymer becomes smaller. [source] Cu-Doped ZnO Nanowires for Efficient and Multispectral Photodetection Applications,ADVANCED MATERIALS, Issue 11 2008Nikolai Kouklin Cu-doped ZnO nanowires exhibiting high sensitivity to both UV and visible light are prepared by a vapor,liquid,solid method. The nanowires are highly resistive in the dark but exhibit several orders of magnitude enhancement in photoconductivity under UV and white-light irradiation because of an avalanche-type photocarrier multiplication effect, paving the way for their use in nanoscale photodetection applications. [source] Increased antitumor potential of the raloxifene prodrug, raloxifene diphosphateINTERNATIONAL JOURNAL OF CANCER, Issue 9 2008Yoshinori Okamoto Abstract Raloxifene (RAL) significantly reduced the incidence of breast cancer in women at high risk of developing the disease. Unlike tamoxifen (TAM), an increased incidence of endometrial cancer was not observed in women treated with RAL. However, RAL, having two hydroxyl moieties, can be conjugated rapidly through phase II metabolism and excreted, making it difficult to achieve adequate bioavailability by oral administration in humans. As a result, higher doses must be administered to obtain an efficacy equivalent to that achieved with TAM. To improve oral bioavailability and antitumor potential, RAL diphosphate was prepared as a prodrug. RAL diphosphate showed several orders of magnitude lower binding potential to both ER, and ER, and weak antiproliferative potency on cultured human MCF-7 and ZR-75-1 breast cancer cells, as compared to RAL. However, RAL diphosphate has a much higher bioavailability than RAL, endowing it with higher antitumor potential than RAL against both 7,12-dimethylbenz(a)anthracene-induced mammary carcinoma in rats and human MCF-7 breast cancer implanted in athymic nude mice. The RAL prodrug may provide greater clinical benefit for breast cancer therapy and prevention. © 2008 Wiley-Liss, Inc. [source] Resonant laser excitation of molecular wiresISRAEL JOURNAL OF CHEMISTRY, Issue 2-3 2002Sigmund Kohler We investigate the influence of external laser excitations on the average current through bridged molecules. For the computation of the current, we use a numerically very efficient formalism that is based on the Floquet solutions of the time-dependent molecule Hamiltonian. It is found that the current as a function of the laser frequency exhibits characteristic peaks originating from resonant excitations of electrons to bridge levels that are unoccupied in the absence of radiation. The electric current through the molecule can exhibit a drastic enhancement by several orders of magnitude. [source] Synthesis and characterization of conducting polyaniline-activated carbon nanocompositesJOURNAL OF APPLIED POLYMER SCIENCE, Issue 3 2007Mohammad Rezaul Karim Abstract Conducting polyaniline (PAni)/activated carbon (AC) nanocomposites were synthesized by the in situ chemical polymerization method. The resultant shell,core PAni,AC nanocomposites were characterized by elemental analysis, Fourier transform infrared, scanning electron microscopy, thermal gravimetric analysis, X-ray diffraction, and transmission electron microscopy. We did not observe any significant chemical interaction between the PAni and AC, only core,shell coupling between the AC and the tightly coated polymer chain was revealed. Measurement of the physical properties showed that the incorporation of conducting PAni on to AC particles during chemical synthesis increased electrical conductivity and thermal stability by several orders of magnitude to that of the pristine PAni powders. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 103: 1973,1977, 2007 [source] Quantity and Quality of Trabecular Bone in the Femur Are Enhanced by a Strongly Anabolic, Noninvasive Mechanical InterventionJOURNAL OF BONE AND MINERAL RESEARCH, Issue 2 2002Clinton Rubin Ph.D. Abstract The skeleton's sensitivity to mechanical stimuli represents a critical determinant of bone mass and morphology. We have proposed that the extremely low level (<10 microstrain), high frequency (20-50 Hz) mechanical strains, continually present during even subtle activities such as standing are as important to defining the skeleton as the larger strains typically associated with vigorous activity (>2000 microstrain). If these low-level strains are indeed anabolic, then this sensitivity could serve as the basis for a biomechanically based intervention for osteoporosis. To evaluate this hypothesis, the hindlimbs of adult female sheep were stimulated for 20 minutes/day using a noninvasive 0.3g vertical oscillation sufficient to induce approximately 5 microstrain on the cortex of the tibia. After 1 year of stimulation, the physical properties of 10-mm cubes of trabecular bone from the distal femoral condyle of experimental animals (n = 8) were compared with controls (n = 9), as evaluated using microcomputed tomography (,CT) scanning and materials testing. Bone mineral content (BMC) was 10.6% greater (p < 0.05), and the trabecular number (Tb.N) was 8.3% higher in the experimental animals (p < 0.01), and trabecular spacing decreased by 11.3% (p < 0.01), indicating that bone quantity was increased both by the creation of new trabeculae and the thickening of existing trabeculae. The trabecular bone pattern factor (TBPf) decreased 24.2% (p < 0.03), indicating trabecular morphology adapting from rod shape to plate shape. Significant increases in stiffness and strength were observed in the longitudinal direction (12.1% and 26.7%, respectively; both, p < 0.05), indicating that the adaptation occurred primarily in the plane of weightbearing. These results show that extremely low level mechanical stimuli improve both the quantity and the quality of trabecular bone. That these deformations are several orders of magnitude below those peak strains which arise during vigorous activity indicates that this biomechanically based signal may serve as an effective intervention for osteoporosis. [source] Stochastic generator of chemical structure.JOURNAL OF COMPUTATIONAL CHEMISTRY, Issue 6 2001Abstract A novel computational technique to generate close-to-equilibrium crosslinked polymeric systems is proposed. Compared to the current state-of-the-art equilibration methods, the new technique appears to be faster by several orders of magnitude. The main advantage of the technique is that one can circumvent the bottlenecks in configuration space that inhibit relaxation in molecular dynamics or Monte Carlo simulations. The problem of polymer equilibration described by continuous equations in molecular dynamics is reduced to a discrete representation where solutions are approximated by simple algorithms. In the current study, a series of coarse-grained, united-atom, and fully atomistic crosslinked networks has been generated. Network statistics and topology, X-ray scattering intensities, and elastic properties are tested vs. experimental results and similar models generated using molecular dynamics and Monte Carlo simulations. The results demonstrate the efficiency of this new method for generating large realistic polymeric systems up to 1.4 M atoms. © 2001 John Wiley & Sons, Inc. J Comput Chem 22: 580,590, 2001 [source] Ceria in catalysis: From automotive applications to the water,gas shift reactionAICHE JOURNAL, Issue 5 2010Raymond J. Gorte Abstract Ceria is a crucial component of automotive catalysts, where its ability to be reduced and re-oxidized provides oxygen storage capacity. Because of these redox properties, ceria can greatly enhance catalytic activities for a number of important reactions when it is used as a support for transition metals. For reactions that use steam as an oxidant (e.g., the water,gas-shift reaction and steam reforming of hydrocarbons), rates for ceria-supported metals can be several orders of magnitude higher than that for ceria or the transition metal alone. Because the redox properties of ceria are strongly dependent on treatment history and the presence of additives, there are significant opportunities for modifying catalysts based on ceria to further improve their performance. This article will review some of the contributions from my laboratory on understanding and using ceria in these applications. © 2010 American Institute of Chemical Engineers AIChE J, 2010 [source] Optimization of multicomponent photopolymer formulations using high-throughput analysis and kinetic modelingAICHE JOURNAL, Issue 5 2010Peter M. Johnson Abstract While high throughput and combinatorial techniques have played an instrumental role in materials development and implementation, numerous problems in materials science and engineering are too complex and necessitate a prohibitive number of experiments, even when considering high throughput and combinatorial approaches, for a comprehensive approach to materials design. Here, we propose a unique combination of high throughput experiments focused on binary formulations that, in combination with advanced modeling, has the potential to facilitate true materials design and optimization in ternary and more complex systems for which experiments are never required. Extensive research on the development of photopolymerizable monomer formulations has produced a vast array of potential monomer/comonomer, initiator and additive combinations. This array dramatically expands the range of material properties that are achievable; however, the vast number of potential formulations has eliminated any possibility of comprehensive materials design or optimization. This limitation is addressed by maximizing the benefits and unique capabilities of high throughput experimentation coupled with predictive models for material behavior and properties. The high throughput experimentation-model combination is useful to collect a limited amount of data from as few as 11 experiments on binary combinations of 10 analyzed monomers, and then use this limited data set to predict and optimize formulation properties in ternary resins that would have necessitated at least 1000 high throughput experiments and several orders of magnitude greater numbers of traditional experiments. A data analysis approach is demonstrated, and the model development and implementation for one model application in which a range of material properties are prescribed, and an optimal formulation that meets those properties is predicted and evaluated. © 2009 American Institute of Chemical Engineers AIChE J, 2010 [source] |