Home About us Contact | |||
Sertoli Cell Maturation (sertoli + cell_maturation)
Selected AbstractsAre germ cell factors essential in the testicular enlargement after neonatal hypothyroidism recovery?INTERNATIONAL JOURNAL OF ANDROLOGY, Issue 1 2002A study using W/Wv mutant mice model We examined the issue of whether germ cell factors are required for testicular enlargement that occurs after recovery from neonatal hypothyroidism. Experiments were performed using W/Wv mutant mice (lacking germ cells) and normal mice (ICR). The pups in experimental group (neonatal hypothyroid) received 6 propyl 2-thio-uracil (PTU) treatment, administered by adding 0.1% (w/v) to the water provided to the mother from day 1 of birth through day 25 postpartum, while the pups of control group received drinking water only. Mice were sacrificed at the age of day 25, 50 and 90, in the case of ICR mice, or at day 25 and 90 in the case of W/Wv mutant mice. In both groups, early hypothyroidism caused a partial recoverable decrease in body growth and testicular development. Both ICR and W/Wv mutant mice, those recovered from neonatal hypothyroidism showed an increase in testis weights, the number of Sertoli cells, and the diameter of the semniferous tubules. This study demonstrates that neonatal hypothyroidism led recovery caused testicular enlargement not only in ICR mice but also in germ cell depleted W/Wv mutant mice. Hence these findings deny direct involvement of the germ cell factors in the process of testicular enlargement in recovered mice even in vivo, and reaffirm the notion that thyroid hormone directly regulates the dynamics of Sertoli cell maturation. [source] Ontogeny of the androgen receptor expression in the fetal and postnatal testis: Its relevance on Sertoli cell maturation and the onset of adult spermatogenesisMICROSCOPY RESEARCH AND TECHNIQUE, Issue 11 2009Rodolfo A. Rey Abstract From fetal life to adulthood, the testis evolves through maturational phases showing specific morphologic and functional features in its different compartments. The seminiferous cords contain Sertoli and germ cells, surrounded by peritubular cells, and the interstitial tissue contains Leydig cells and connective tissue. Sertoli cells secrete anti-Müllerian hormone (AMH), whereas Leydig cells secrete androgens. In the fetal and early postnatal testis, Leydig cells actively secrete androgens. Sertoli cells are morphologically and functionally immature,e.g., they secrete high levels of AMH,and germ cells proliferate by mitosis but do not enter meiosis. During infancy and childhood, Leydig cells regress and testosterone secretion declines dramatically. Sertoli cells remain immature and spermatogenesis is arrested at the premeiotic stage. At puberty, Leydig cells differentiate again, and testosterone concentration increases and provokes Sertoli cell maturation,e.g., down-regulation of AMH expression,and germ cells undergo meiosis, the hallmark of adult spermatogenesis driving to sperm production. An intriguing feature of testicular development is that, although testosterone production is as active in the fetal and early postnatal periods as in puberty, Sertoli cells and spermatogenesis remain immature until pubertal onset. Here, we review the ontogeny of the androgen receptor expression in the testis and its impact on Sertoli cell maturation and the onset of pubertal spermatogenesis. We show that the absence of androgen receptor expression in Sertoli cells underlies a physiological stage of androgen insensitivity within the male gonad in the fetal and early postnatal periods. Microsc. Res. Tech., 2009. © 2009 Wiley-Liss, Inc. [source] Characteristics of testicular dysgenesis syndrome and decreased expression of SRY and SOX9 in Frasier syndromeMOLECULAR REPRODUCTION & DEVELOPMENT, Issue 9 2008Valérie Schumacher Abstract Frasier syndrome (FS) is characterized by chronic renal failure in early adulthood, varying degrees of gonadal dysgenesis, and a high risk for gonadal germ cell malignancies, particularly gonadoblastoma. Although it is known to arise from heterozygous splice mutations in intron 9 of the Wilms' tumor gene 1 (WT1), the mechanisms by which these mutations result in gonadal dysgenesis in humans remain obscure. Here we show that a decrease in WT1,+,KTS isoforms due to disruption of alternative splicing of the WT1 gene in a FS patient is associated with diminished expression of the transcription factors SRY and SOX9 in Sertoli cells. These findings provide the first confirmation in humans of the results obtained by others in mice. Consequently, Sertoli cells fail to form the specialized environment within the seminiferous tubules that normally houses developing germ cells. Thus, germ cells are unable to fully mature and are blocked at the spermatogonial,spermatocyte stage. Concomitantly, subpopulations of the malignant counterpart of primordial germ cells/gonocytes, the intratubular germ cell neoplasia unclassified type (ITGCN), are identified. Furthermore, dysregulated Leydig cells produce insufficient levels of testosterone, resulting in hypospadias. Collectively, the impaired spermatogenesis, hypospadias and ITGCN comprise part of the developmental disorder known as ,testicular dysgenesis syndrome' (TDS), which arises during early fetal life. The data presented here show that critical levels of WT1,+,KTS, SRY and SOX9 are required for normal Sertoli cell maturation, and subsequent normal spermatogenesis. To further study the function of human Sertoli cells in the future, we have established a human cell line. Mol. Reprod. Dev. 75: 1484,1494, 2008. © 2008 Wiley-Liss, Inc. [source] |