Sensory Neurones (sensory + neurone)

Distribution by Scientific Domains
Distribution within Life Sciences


Selected Abstracts


Constitutive expression of the low-affinity neurotrophin receptor and changes during axotomy-induced death of sensory neurones in the neonatal rat dorsal root ganglion

JOURNAL OF ANATOMY, Issue 2 2003
Simon S. Murray
Abstract Sensory neurones in the dorsal root ganglion (DRG) of the neonatal rat express the 75-kDa low-affinity neurotrophin receptor (p75NTR) and these neurones degenerate rapidly after axotomy. p75NTR belongs to the tumour necrosis factor superfamily, several members of which have a role in cell death and it is constitutively expressed within a subpopulation of DRG neurones. p75NTR has been implicated in mediating the degeneration of these neurones after axotomy. In this study, we characterize the expression of p75NTR in sensory neurones of the newborn rat DRG using immunohistochemistry. Furthermore, we investigate the change in constitutive expression pattern of p75NTR in these neurones following axotomy. In the C7 and C8 DRG of the newborn rat, p75NTR is expressed in approximately 70% of DRG neurones. Those expressing p75NTR can be classified into subpopulations with moderate or intense p75NTR expression, each present in approximately equal proportions. Whilst p75NTR expression is observed in neurones throughout the entire neuronal diameter range, a correlation exists between neuronal diameter and p75NTR expression intensity. We also found that the most vulnerable population following axotomy were those sensory neurones which constitutively express the highest levels of p75NTR, i.e. the large-diameter neurones. [source]


Extracellular cAMP inhibits P2X3 receptors in rat sensory neurones through G protein-mediated mechanism

ACTA PHYSIOLOGICA, Issue 2 2010
M. V. Mamenko
Abstract Aim:, To identify the mechanisms of P2X3 receptor inhibition by extracellular cyclic adenosine monophosphate (cAMP) in rat dorsal root ganglion (DRG) neurones. Methods:, Whole-cell currents were measured in cultured DRG neurones using the combination of voltage and concentration clamp. Results:, We have found that extracellular cAMP inhibits P2X3 -mediated currents in a concentration- and use-dependent manner. The P2X3 currents, activated by ATP applied every 4 min, were inhibited by 55% in the presence of 10 ,m cAMP and by 81% in the presence of 30 ,m cAMP. At 8 min interval between ATP applications the same concentration of cAMP did not alter the currents. Addition of 0.5 mm of guanosine 5,- O -(2-thiodiphosphate) to intracellular solution blocked the inhibitory action of cAMP. The inhibitory effects of cAMP were not mimicked by extracellular application of 30 ,m adenosine. Conclusions:, In this paper, we demonstrate, for the first time, that extracellular application of cAMP to rat sensory neurones inhibits P2X3 receptors via a G protein-coupled mechanism in a use-dependent manner, thus indicating the neuronal expression of specific plasmalemmal cAMP receptor. [source]


Synapse-specific localization of vesicular glutamate transporters in the rat olfactory bulb

EUROPEAN JOURNAL OF NEUROSCIENCE, Issue 5 2007
Marie-Madeleine Gabellec
Abstract Vesicular glutamate transporters (VGLUTs) mediate the packaging of the excitatory neurotransmitter glutamate into synaptic vesicles. Three VGLUT subtypes have so far been identified, with distinct expression patterns in the adult brain. Here, we investigated the spatial distribution of the three VGLUTs in the rat olfactory bulb, a brain region containing a variety of glutamate synapses, both axodendritic and dendrodendritic. Using multilabelling confocal microscopy and electron microscopic immunocytochemistry, we showed that each VGLUT isoform has a highly selective localization in olfactory bulb synapses. VGLUT1 is present at dendrodendritic synapses established by the output neurones (mitral and tufted cells) with bulbar interneurones in the glomerular layer and external plexiform layer, as well as in axonal synapses of the granule cell layer. By contrast, VGLUT2 is strongly expressed in axon terminals of olfactory sensory neurones, which establish synapses with second-order neurones in the glomerular neuropil. VGLUT2 is also found in the outer part of the external plexiform layer and in the granule cell layer but colocalizes only partially with VGLUT1. Finally, we showed that VGLUT3 is exclusively located in the glomerular neuropil, where it colocalizes extensively with the vesicular inhibitory amino acid transporter vesicular GABA transporter, suggesting that it is associated with a subset of inhibitory synapses. Together, these observations extend previous findings on VGLUT distribution in the forebrain, and suggest that each VGLUT subtype has a specific function in the distinct features of axodendritic and dendrodendritic synapses that characterize the olfactory bulb circuit. [source]


Constitutive expression of the low-affinity neurotrophin receptor and changes during axotomy-induced death of sensory neurones in the neonatal rat dorsal root ganglion

JOURNAL OF ANATOMY, Issue 2 2003
Simon S. Murray
Abstract Sensory neurones in the dorsal root ganglion (DRG) of the neonatal rat express the 75-kDa low-affinity neurotrophin receptor (p75NTR) and these neurones degenerate rapidly after axotomy. p75NTR belongs to the tumour necrosis factor superfamily, several members of which have a role in cell death and it is constitutively expressed within a subpopulation of DRG neurones. p75NTR has been implicated in mediating the degeneration of these neurones after axotomy. In this study, we characterize the expression of p75NTR in sensory neurones of the newborn rat DRG using immunohistochemistry. Furthermore, we investigate the change in constitutive expression pattern of p75NTR in these neurones following axotomy. In the C7 and C8 DRG of the newborn rat, p75NTR is expressed in approximately 70% of DRG neurones. Those expressing p75NTR can be classified into subpopulations with moderate or intense p75NTR expression, each present in approximately equal proportions. Whilst p75NTR expression is observed in neurones throughout the entire neuronal diameter range, a correlation exists between neuronal diameter and p75NTR expression intensity. We also found that the most vulnerable population following axotomy were those sensory neurones which constitutively express the highest levels of p75NTR, i.e. the large-diameter neurones. [source]


Medullary motor neurones associated with drinking behaviour of Japanese eels

JOURNAL OF FISH BIOLOGY, Issue 1 2003
T. Mukuda
A fluorescent dye, Evans blue (EB), was injected into the following seven drinking-associated muscles of the Japanese eel Anguilla japonica: the sternohyoid, third branchial, fourth branchial, opercular, pharyngeal, upper oesophageal sphincter and oesophageal body muscles. The sternohyoid muscle promotes ,ingestion', and the remaining muscles contribute to ,swallowing'. All neurones stained by EB were located ipsilaterally in the caudal medulla oblongata (MO) of the Japanese eel. Neurones projecting into the sternohyoid muscle were identified as those in the spino-occipital motor nucleus (NSO), and neurones projecting into the remaining muscles as those in the glossopharyngeal,vagal motor complex (GVC). Within the GVC, the neuronal arrangement was topological, and hence, ,swallowing' will be completed if the GVC neurones ,fire' progressively from rostral to caudal. These neurones in the NSO and GVC may use acetylcholine (ACh) as a neurotransmitter, as the EB-positive neurones in both nuclei were immunoreactive against anticholine acetyltransferase (anti-ChAT) antibody. Besides the MO, some somata in a ganglion of the vagal nerve were also stained by EB injected into the pharyngeal, the upper oesophageal sphincter and the oesophageal body muscles. The localization and the shape of the somata suggest that they are sensory neurones. These sensory neurones were not ChAT-immunoreactive. Combining these results, based on a model for ,swallowing' in mammals, a plausible model for central organization of ,drinking' in the Japanese eel is proposed, which suggests that ,drinking' in the fishes is regulated by the neuronal circuit for ,swallowing' in mammals. [source]


Varicella-zoster virus isolates, but not the vaccine strain OKA, induce sensitivity to alpha-1 and beta-1 adrenergic stimulation of sensory neurones in culture

JOURNAL OF MEDICAL VIROLOGY, Issue S1 2003
Michaela Schmidt
Abstract The reactivation of varicella-zoster virus (VZV) from its persistent state in sensory neurones causes shingles and induces severe, long-lasting pain and hyperalgesia that often lead to postherpetic neuralgia. To investigate the VZV-induced neuropathic changes, we established conditions for the active infection of sensory neurones from rat dorsal root ganglia in vitro. After 2 days of culture, up to 50% of the cells expressed viral antigens of the immediate-early and late replication phase. The intracellular calcium ion concentration was monitored in individual cells by microfluorimetry. Whereas the calcium response to capsaicin was preserved, the VZV-infected neurones gained an unusual sensitivity to noradrenaline stimulation in contrast to non-infected cells. The adrenergic agonists phenylephrine and isoproterenol had a similar efficacy demonstrating that both ,1 - and ,1 -adrenoreceptors were involved. The sensitivity to adrenergic stimulation was observed after infection with different wildtype isolates, but not with the attenuated vaccine strain OKA. The lack of noradrenaline sensitivity of vaccine-infected neurones demands a structural comparison of wildtype and vaccine viruses with and without phenotype. A partial sequence evaluation (26 kb) of the European OKA vaccine strain surprisingly revealed a series of nucleotide exchanges in comparison to presumably identical OKA strains from other sources, although VZV is generally considered genetically stable. In summary, we report that the infection with wildtype VZV isolates, but not with the vaccine strain, induces noradrenaline sensitivity in sensory neurones, which correlates with clinical and experimental observations of adrenergic effects involved in VZV-induced neuralgia. J. Med. Virol. 70:S82,S89, 2003. © 2003 Wiley-Liss, Inc. [source]


Expression of gp130 and leukaemia inhibitory factor receptor subunits in adult rat sensory neurones: regulation by nerve injury

JOURNAL OF NEUROCHEMISTRY, Issue 1 2002
Natalie J. Gardiner
Abstract Members of the interleukin-6 (IL-6) family of cytokines have been implicated as major mediators of the response of the adult nervous system to injury. The basis for an interaction of IL-6 cytokines with adult sensory neurones has been established by analysing the levels and distribution of the two signal-transducing receptor subunits, glycoprotein 130 (gp130) and leukaemia inhibitory factor receptor (LIFR), in the dorsal root ganglion (DRG) of male adult rats before and following nerve injury. All sensory neurones express gp130-immunoreactivity (IR) in the cytoplasm and on the plasma membrane. Levels of gp130 and its intracellular distribution remained unchanged up to 14 days following sciatic nerve axotomy. LIFR-IR was largely absent from the cytoplasm and plasma membrane of sensory neurones, but confined almost exclusively to the nuclear compartment. However, following axotomy, punctate cytoplasmic LIFR-IR was detected which persisted up to 28 days following axotomy. The expression of cytoplasmic LIFR 2 days post-axotomy was proportionally greater in a subset of small diameter sensory neurones which expressed either the sensory neuropeptide CGRP or the cell surface marker isolectin B4. The coexpression of gp130 and LIFR in the same intracellular compartment following axotomy conveys potential responsiveness of injured sensory neurones to members of the IL-6 family of cytokines. [source]


Activation Of Mitogen Activated Protein Kinases (Mapks) In Response To High Glucose In Primary Sensory Neurones

JOURNAL OF THE PERIPHERAL NERVOUS SYSTEM, Issue 3 2000
T Purves
In diabetes high glucose stresses cells as a prelude to complications. The MAPKs are serine-threonine kinases, which are putative glucose stress transducers, comprising extracellular signal regulated kinases (ERKs), p38 and c-Jun, n-terminal kinases (JNKs). In 10 week streptozotocin-induced diabetic rats JNK activation was increased when compared to age matched controls. This study aimed to determine the signaling pathways activated in response to high glucose in adult sensory neurones in vitro. Cultures of adult rat dorsal root ganglia (DRG) were treated with 10mM, 25mM and 50mM glucose for 16 hours. MAPK activation was examined in Western blots using antibodies raised against phosphorylated and non-phosphorylated epitopes (results expressed as a ratio of phosphorylated to non-phosphorylated kinase). Glucose caused a concentration-dependent increase in phospho-p38 with a 1.6 fold increase at 25mM (0.77 ± 1.04) and a 2.4 fold increase at 50mM (1.18 ± 1.44) when compared to 10mM (0.49 ± 0.60) glucose. Phosphorylation of the p56 JNK isoform increased 2.4 fold (4.37 ± 3.59) and the p46 isoform 2.2 fold (1.95 ± 1.35) at 50mM glucose when compared to 10mM (p56 1.80 ± 0.99, p46 0.88 ± 0.31). ERK phosphorylation remained unchanged in 3 different experiments. Immunocytochemistry located these changes to neurones, rather than the small percentage of non-neurones that remain in culture. Transcription factor activation as a result of MAPK activation is being investigated using electrophoretic mobility shift assays. We conclude that the activation of MAPK pathways is involved in the response of neuronal cells to high glucose stress. [source]


Presynaptic modulation of sensory neurons in the segmental ganglia of arthropods

MICROSCOPY RESEARCH AND TECHNIQUE, Issue 4 2002
Alan Hugh David WatsonArticle first published online: 3 SEP 200
Abstract The afferent terminals of arthropod sensory neurones receive abundant input synapses, usually closely intermingled with the sites of synaptic output. The majority of the input synapses use the neurotransmitter GABA, but in some afferents there is a significant glutamatergic or histaminergic component. GABA and histamine shunt afferent action potentials by increasing chloride conductance. Though glutamate can also have this effect in the arthropod central nervous system, its action on afferent terminals appears to be mediated by increases in potassium conductance or by the action of metabotropic receptors. The action of the presynaptic synapses on the afferents are many and varied. Even on the same afferent, they may have several distinct roles that can involve both tonic and phasic patterns of primary afferent depolarisation. Despite the ubiquity and importance of their effects however, the populations of neurones from which the presynaptic synapses are made, remain largely unidentified. Microsc. Res. Tech. 58:262,271, 2002. © 2002 Wiley-Liss, Inc. [source]


Sensory neurone responses to mucosal noxae in the upper gut: relevance to mucosal integrity and gastrointestinal pain

NEUROGASTROENTEROLOGY & MOTILITY, Issue 5 2002
P. Holzer
Abstract ,The digestive tract is supplied by extrinsic and intrinsic sensory neurones that, together with endocrine and immune cells, form a surveillance network that is essential to gut function. This article focuses on the responses of extrinsic afferent neurones to chemical insults of the gastrointestinal mucosa and their pathophysiological relevance to mucosal integrity and abdominal pain. Within the gastroduodenal region, spinal afferents subserve an emergency function because, in case of alarm by influxing acid, they stimulate mechanisms of mucosal protection via an efferent-like release of transmitters. Other sensory neurones signal chemical noxae to the brain, a task that is not confined to spinal afferents because vagal afferents communicate gastric acid and peripheral immune challenges to the brainstem and in this way elicit autonomic, endocrine, affective and behavioural reactions. Emerging evidence indicates that hypersensitivity of extrinsic afferent pathways to mechanical and chemical stimuli makes an important contribution to the abdominal hyperalgesia seen in functional dyspepsia and irritable bowel syndrome. Sensitization may be brought about by inflammatory processes that lead to up-regulation and functional alterations of receptors and ion channels on sensory neurones. Such sensory neurone-specific molecules, which include vanilloid (capsaicin) receptors, may represent important targets for novel drugs to treat abdominal pain. [source]


Protein kinase C mediates up-regulation of tetrodotoxin-resistant, persistent Na+ current in rat and mouse sensory neurones

THE JOURNAL OF PHYSIOLOGY, Issue 3 2005
Mark D. Baker
The tetrodotoxin-resistant (TTX-r) persistent Na+ current, attributed to NaV1.9, was recorded in small (< 25 ,m apparent diameter) dorsal root ganglion (DRG) neurones cultured from P21 rats and from adult wild-type and NaV1.8 null mice. In conventional whole-cell recordings intracellular GTP-,-S caused current up-regulation, an effect inhibited by the PKC pseudosubstrate inhibitor, PKC19,36. The current amplitude was also up-regulated by 25 ,m intracellular 1-oleoyl-2-acetyl-sn-glycerol (OAG) consistent with PKC involvement. In perforated-patch recordings, phorbol 12-myristate 13-acetate (PMA) up-regulated the current, whereas membrane-permeant activators of protein kinase A (PKA) were without effect. PGE2 did not acutely up-regulate the current. Conversely, both PGE2 and PKA activation up-regulated the major TTX-r Na+ current, NaV1.8. Extracellular ATP up-regulated the persistent current with an average apparent Kd near 13 ,m, possibly consistent with P2Y receptor activation. Numerical simulation of the up-regulation qualitatively reproduced changes in sensory neurone firing properties. The activation of PKC appears to be a necessary step in the GTP-dependent up-regulation of persistent Na+ current. [source]


Electrophysiological properties of two axonal sodium channels, Nav1.2 and Nav1.6, expressed in mouse spinal sensory neurones

THE JOURNAL OF PHYSIOLOGY, Issue 3 2005
Anthony M. Rush
Sodium channels Nav1.2 and Nav1.6 are both normally expressed along premyelinated and myelinated axons at different stages of maturation and are also expressed in a subset of demyelinated axons, where coexpression of Nav1.6 together with the Na+/Ca2+ exchanger is associated with axonal injury. It has been difficult to distinguish the currents produced by Nav1.2 and Nav1.6 in native neurones, and previous studies have not compared these channels within neuronal expression systems. In this study, we have characterized and directly compared Nav1.2 and Nav1.6 in a mammalian neuronal cell background and demonstrate differences in their properties that may affect neuronal behaviour. The Nav1.2 channel displays more depolarized activation and availability properties that may permit conduction of action potentials, even with depolarization. However, Nav1.2 channels show a greater accumulation of inactivation at higher frequencies of stimulation (20,100 Hz) than Nav1.6 and thus are likely to generate lower frequencies of firing. Nav1.6 channels produce a larger persistent current that may play a role in triggering reverse Na+/Ca2+ exchange, which can injure demyelinated axons where Nav1.6 and the Na+/Ca2+ exchanger are colocalized, while selective expression of Nav1.2 may support action potential electrogenesis, at least at lower frequencies, while producing a smaller persistent current. [source]