Sensitivity Study (sensitivity + study)

Distribution by Scientific Domains


Selected Abstracts


MODELED REGIONAL CLIMATE CHANGE IN THE HYDROLOGIC REGIONS OF CALIFORNIA: A CO2 SENSITIVITY STUDY,

JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, Issue 3 2004
Mark A. Snyder
ABSTRACT: Using a regional climate model (RegCM2.5), the potential impacts on the climate of California of increasing atmospheric CO2 concentrations were explored from the perspective of the state's 10 hydrologic regions. Relative to preindustrial CO2 conditions (280 ppm), doubled preindustrial CO2 conditions (560 ppm) produced increased temperatures of up to 4°C on an annual average basis and of up to 5°C on a monthly basis. Temperature increases were greatest in the central and northern regions. On a monthly basis, the temperature response was greatest in February, March, and May for nearly all regions. Snow accumulation was significantly decreased in all months and regions, with the greatest reduction occurring in the Sacramento River region. Precipitation results indicate drier winters for all regions, with a large reduction in precipitation from December to April and a smaller decrease from May to November. The result is a wet season that is slightly reduced in length. Findings suggest that the total amount of water in the state will decrease, water needs will increase, and the timing of water availability will be greatly perturbed. [source]


Synthesis, Thermal Decomposition and Sensitivity Study of CsDNBF

PROPELLANTS, EXPLOSIVES, PYROTECHNICS, Issue 1 2007
Shaozong Wang
Abstract CsDNBF (cesium 7-hydroxy-4,6-dinitro-5,7-dihydrobenzofuroxanide) was synthesized from the sodium salt of DNBF and cesium nitrate. The thermal decomposition process has been investigated and the results show that the solid residues at 240,°C are RCOOCs, CsNCO, RNO2 and CsNO3. The sensitivity results demonstrate that CsDNBF has better properties than KDNBF, which has been widely used. [source]


Sensitivity Study on Modeling an Internal Airlift Loop Reactor Using a Steady 2D Two-Fluid Model

CHEMICAL ENGINEERING & TECHNOLOGY (CET), Issue 12 2008
Q. Huang
Abstract The sensitivity study of bubbly flow in an internal airlift loop reactor is presented using a steady Reynolds averaging two-fluid model. Comparative evaluation of different drag formulations, drag coefficient correlations, turbulence effect on the drag coefficient, outlet slip velocity, and bubble size is performed and the respective influence to the simulation results is highlighted. It is found that a complicated drag formulation may not result in reliable predictions. All the drag coefficient correlations underpredict the gas holdup if the influence of turbulence on the drag coefficient is not well incorporated. Fortunately, the global hydrodynamics is not sensitive to the outflow slip velocity for a wide range, so a steady two-fluid model can be used to simulate the bubbly flow when the flow field is fully developed. The correct estimation of bubble size with properly selected correlations play an important role in successful simulation of gas-liquid bubbly flow in airlift loop reactors. [source]


Sensitivity study of the urban heat island intensity to urban characteristics

INTERNATIONAL JOURNAL OF CLIMATOLOGY, Issue 7 2008
R. Hamdi
Abstract A detailed urban surface exchange parameterization, implemented in a meso-scale atmospheric model, has been used to study the urban heat island (UHI) intensity during a summer period in the city of Basel, Switzerland. In this urban parameterization, the city is represented as a combination of three urban classes (road, roof and wall), characterized by the size of the street canyon and the building and is thus able to take into account the momentum sink over the entire height of the building, as well as the shadowing and the radiation trapping effects. A control experiment including all the urban parameters describing the city centre of Basel produced a canyon air temperature that compared well with observations. A series of experiments was then conducted in which successively each of the urban parameters characterizing the city centre was changed providing the basis for an assessment of its effect on UHI mitigation. Copyright © 2007 Royal Meteorological Society [source]


Effects of bias combustion on volatile nitrogen transformation

ASIA-PACIFIC JOURNAL OF CHEMICAL ENGINEERING, Issue 3 2010
Xiaohui Zhang
Abstract Nitrogen oxides (NOx) are among the principal pollutants from coal combustion, which have caused serious environmental issues around the world. Many advanced combustion systems have been developed to reduce NOx emissions. Technologies that combine low NOx burners (LNB) and air staging systems have been widely used as they can control the formation of volatile NOx effectively. In this paper, the process of volatile nitrogen release was simulated using the FG,DVC pyrolysis model, in order to provide reliable reference for designing LNBs and air staging combustion systems. The mechanism of NOx emission from volatile N in a combustion system was studied with CHEMKIN 4.1 package, which demonstrated that noticeable reduction of NOx could be obtained at an equivalence ratio (ER) of 1.22, which was 3,4% and 10,15% higher than that at an ER of 0.77 and 0.39, respectively. Sensitivity study of all basic reactions indicated that NH2 and HCNO radicals are the major inter-compounds which can reduce NO at bias combustion conditions. Copyright © 2009 Curtin University of Technology and John Wiley & Sons, Ltd. [source]


Hydrologic and geochemical controls on soluble benzene migration in sedimentary basins

GEOFLUIDS (ELECTRONIC), Issue 2 2005
Y. ZHANG
Abstract The effects of groundwater flow and biodegradation on the long-distance migration of petroleum-derived benzene in oil-bearing sedimentary basins are evaluated. Using an idealized basin representation, a coupled groundwater flow and heat transfer model computes the hydraulic head, stream function, and temperature in the basin. A coupled mass transport model simulates water washing of benzene from an oil reservoir and its miscible, advective/dispersive transport by groundwater. Benzene mass transfer at the oil,water contact is computed assuming equilibrium partitioning. A first-order rate constant is used to represent aqueous benzene biodegradation. A sensitivity study is used to evaluate the effect of the variation in aquifer/geochemical parameters and oil reservoir location on benzene transport. Our results indicate that in a basin with active hydrodynamics, miscible benzene transport is dominated by advection. Diffusion may dominate within the cap rock when its permeability is less than 10,19 m2. Miscible benzene transport can form surface anomalies, sometimes adjacent to oil fields. Biodegradation controls the distance of transport down-gradient from a reservoir. We conclude that benzene detected in exploration wells may indicate an oil reservoir that lies hydraulically up-gradient. Geochemical sampling of hydrocarbons from springs and exploration wells can be useful only when the oil reservoir is located within about 20 km. Benzene soil gas anomalies may form due to regional hydrodynamics rather than separate phase migration. Diffusion alone cannot explain the elevated benzene concentration observed in carrier beds several km away from oil fields. [source]


Defining and optimizing algorithms for neighbouring particle identification in SPH fluid simulations

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, Issue 6 2008
G. Viccione
Abstract Lagrangian particle methods such as smoothed particle hydrodynamics (SPH) are very demanding in terms of computing time for large domains. Since the numerical integration of the governing equations is only carried out for each particle on a restricted number of neighbouring ones located inside a cut-off radius rc, a substantial part of the computational burden depends on the actual search procedure; it is therefore vital that efficient methods are adopted for such a search. The cut-off radius is indeed much lower than the typical domain's size; hence, the number of neighbouring particles is only a little fraction of the total number. Straightforward determination of which particles are inside the interaction range requires the computation of all pair-wise distances, a procedure whose computational time would be unpractical or totally impossible for large problems. Two main strategies have been developed in the past in order to reduce the unnecessary computation of distances: the first based on dynamically storing each particle's neighbourhood list (Verlet list) and the second based on a framework of fixed cells. The paper presents the results of a numerical sensitivity study on the efficiency of the two procedures as a function of such parameters as the Verlet size and the cell dimensions. An insight is given into the relative computational burden; a discussion of the relative merits of the different approaches is also given and some suggestions are provided on the computational and data structure of the neighbourhood search part of SPH codes. Copyright © 2008 John Wiley & Sons, Ltd. [source]


Large eddy simulations of turbulent swirling flows in a dump combustor: a sensitivity study

INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, Issue 2 2005
P. Wang
Abstract Large eddy simulations (LES) of confined turbulent swirling flows in a model dump combustor are carried out. The simulations are based on a high-order finite difference method on a Cartesian grid, with the sub-grid scale stress tensor modelled using a scale-similarity model. The aims of this work are to study the physics of the flow and to evaluate the performance of LES method for simulation of the major features of turbulent swirling flows,the vortex breakdown, the highly anisotropic and fast-decaying turbulence structure. Influences of inflow/outflow conditions, combustor geometry, inlet swirl profile and Reynolds numbers on the vortex breakdown and turbulence structures are investigated. At very high swirl levels, the influence of the outflow conditions and the outlet geometry is fairly significant, not only at downstream near the outlet, but also at far upstream. At low Reynolds numbers, the onset of vortex breakdown is fairly sensitive to the change of Reynolds number; however, at high Reynolds numbers it is rather insensitive to the Reynolds number. Comparisons of LES results with experimental data are made. The LES results are shown to be in reasonably good agreement with the experimental data if appropriate inflow and outflow boundary conditions are imposed. Copyright © 2004 John Wiley & Sons, Ltd. [source]


Sensitivity of an Arctic regional climate model to the horizontal resolution during winter: implications for aerosol simulation

INTERNATIONAL JOURNAL OF CLIMATOLOGY, Issue 11 2005
Eric Girard
Abstract Our ability to properly simulate current climate and its future change depends upon the exactitude of the physical processes that are parameterized on the one hand, and on model configuration on the other hand. In this paper, we focus on the latter and investigate the effect of the horizontal grid resolution on the simulation of a month of January over the Arctic. A limited-area numerical climate model is used to simulate the month of January 1990 over a grid that includes the Arctic and sub-Arctic regions. Two grid resolutions are used: 50 km and 100 km. Results show that finer details appear for regional circulation, temperature, and humidity when increasing horizontal resolution. This is particularly true for continental and sea ice boundaries, which are much better resolved by high-resolution model simulations. The Canadian Archipelago and rivers in northern Russia appear to benefit the most from higher horizontal resolution. High-resolution simulations capture some frozen rivers and narrow straits between islands. Therefore, much colder surface air temperature is simulated over these areas. Precipitation is generally increased in those areas and over topography due to a better representation of surface heterogeneities when increasing resolution. Large-scale atmospheric circulation is substantially changed when horizontal resolution is increased. Feedback processes occur between surface air temperature change over heterogeneous surfaces and atmospheric circulation. High-resolution simulations develop a stronger polar vortex. The mean sea-level pressure increases over the western Arctic and Iceland and decreases over the eastern Arctic. This circulation leads to a substantial cooling of the eastern Arctic and enhanced synoptic activity over the Arctic associated with an intensification of the baroclinic zone. Aerosol mass loading, which is simulated explicitly in this model, is significantly altered by the grid resolution change with the largest differences in aerosol concentration over areas where precipitation and atmospheric circulation are the most affected. The implications of this sensitivity study to the evaluation of indirect radiative effects of anthropogenic aerosols are discussed. Copyright © 2005 Royal Meteorological Society. [source]


Optimization of inlet temperature for deactivating LTWGS reactor performance

AICHE JOURNAL, Issue 7 2005
J. L. Ayastuy
Abstract An industrial Cu-based low-temperature water-gas shift (LTWGS) reactor, subject to deactivation by irreversible chlorine adsorption, has been modeled and optimized. Both the chlorine adsorption kinetics and deactivation kinetics were assumed first order to chlorine partial pressure, and the rate constants were considered independent of temperature. The Efficient Production (EP) method has been used to compute the reactor production until the outlet CO conversion decays below a permissible minimum level. Two alternative strategies for the inlet temperature have been used to maximize the EP: constant and time-variable. Compared to the EP obtained for the optimum constant inlet temperatures, EP resulting from the use of the optimum time-variable inlet temperature sequence were higher, affording important energy savings. Furthermore, a sensitivity study with respect to most influential operational variables, such as inlet total flow rate, steam-to-gas ratio, pressure, and concentrations of chlorine, hydrogen, carbon monoxide, and inert content, was carried out. © 2005 American Institute of Chemical Engineers AIChE J, 2005 [source]


Simultaneous Controllability of PSD and MWD in Emulsion Polymerisation

MACROMOLECULAR REACTION ENGINEERING, Issue 5 2008
Stephen J. Sweetman
Abstract A sensitivity study of particle size distribution (PSD) and molecular weight distribution (MWD) responses to perturbations in initiator, surfactant, monomer and chain transfer agent in a semi-batch emulsion polymerisation is presented. The objective is to provide a systematic study on the ability to simultaneously control both PSD and MWD, towards inferential control of end-use product properties. This would lead towards identification of the practical feasible regions of operability. All inputs appeared to have an intrinsic and simultaneous influence on end-time PSD and MWD. Trends shown in experimental results have been explained in a mechanistic sense and also compared to simulation results from a combined PSD/MWD population balance model. The preliminary comparison between experiment and simulation highlights areas to be focussed on with respect to model improvement. [source]


Global and local linear buckling behavior of a chiral cellular structure

PHYSICA STATUS SOLIDI (B) BASIC SOLID STATE PHYSICS, Issue 3 2005
A. Spadoni
Abstract This paper investigates the flat-wise compression behavior of an innovative cellular structure configuration. The considered layout has a hexagonal chiral geometry featuring cylinders, or nodes, joined by ligaments, or ribs. The resulting assembly is characterized by a number of interesting properties that can be exploited for the design of alternative honeycombs or cellular topologies to be used in sandwich construction. The flat-wise strength of the chiral geometry is investigated through classical analytical formulas for the linear buckling of thin plates and shells and a bifurcation analysis performed on a Finite Element model. The analytical expressions predict the global buckling behavior and the resulting critical loads, and can be directly compared with the results obtained from the Finite Element analysis. In addition, the Finite Element model predicts local buckling modes, which should be considered to evaluate the possible development of localized plasticity. A sensitivity study is performed to evaluate the influence of the geometry of the chiral structure on its buckling strength. The study shows that the considered topology can offer great design flexibility, whereby several parameters can be selected and modified to improve the flat-wise performance. The comparison with traditional, hexagonal centro-symmetric structural configurations concludes the paper and demonstrates the enhanced performance and the potentials of chiral noncentro-symmetric designs. (© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim) [source]


The use of particle beam mass spectrometry for the measurement of impurities in a nabumetone drug substance, not easily amenable to atmospheric pressure ionisation techniques

RAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 4 2001
Jean-Claude Wolff
Liquid chromatography/particle beam mass spectrometry (LC/PB-MS) was used for the structural elucidation of some impurities in nabumetone as this compound poorly ionises by atmospheric pressure ionisation (API) techniques. PB-MS was optimised for nabumetone and a sensitivity study was carried out. To obtain full scan electron ionisation spectra a minimum of 100,ng of compound on column was needed. By using 20,mg/mL solutions of nabumetone, impurities at levels of about 250,ppm mass fraction relative to nabumetone could be detected. Results were compared with LC/API-MS and previous GC/MS. Copyright © 2001 John Wiley & Sons, Ltd. [source]


Antarctic winter tropospheric warming,the potential role of polar stratospheric clouds, a sensitivity study

ATMOSPHERIC SCIENCE LETTERS, Issue 4 2009
T. A. Lachlan-Cope
Abstract Over the last 30 years, Antarctic mid-tropospheric temperatures in winter have increased by 0.5 K per decade, the largest regional tropospheric warming observed. Over this period, amounts of polar stratospheric cloud(PSC) have also increased, as rising CO2 concentrations cooled the stratosphere. By imposing an idealisation of these increases in PSC within the radiation scheme of an atmosphere-only general circulation model, we find that they could have contributed to the observed warming. The present generation of global climate models do not properly represent PSCs, and so these results demonstrate the need to improve the representation of PSCs. Copyright © 2009 Royal Meteorological Society and Crown Copyright [source]


Analysis of Misclassified Correlated Binary Data Using a Multivariate Probit Model when Covariates are Subject to Measurement Error

BIOMETRICAL JOURNAL, Issue 3 2009
Surupa Roy
Abstract A multivariate probit model for correlated binary responses given the predictors of interest has been considered. Some of the responses are subject to classification errors and hence are not directly observable. Also measurements on some of the predictors are not available; instead the measurements on its surrogate are available. However, the conditional distribution of the unobservable predictors given the surrogate is completely specified. Models are proposed taking into account either or both of these sources of errors. Likelihood-based methodologies are proposed to fit these models. To ascertain the effect of ignoring classification errors and /or measurement error on the estimates of the regression and correlation parameters, a sensitivity study is carried out through simulation. Finally, the proposed methodology is illustrated through an example. [source]