Home About us Contact | |||
Sensitive Probe (sensitive + probe)
Selected AbstractsThe Use of Terahertz Spectroscopy as a Sensitive Probe in Discriminating the Electronic Properties of Structurally Similar Multi-Walled Carbon NanotubesADVANCED MATERIALS, Issue 38-39 2009Edward P. J. Parrott Terahertz spectroscopy is used to definitively distinguish between two multiwalled carbon nanotubes (see figure), which have commercial applications in a number of advanced materials. Other techniques do not provide a sensitive discrimination of the measured properties. This observation is rationalized by considering the dielectric nature of the materials and the relationship of this to their structural differences. [source] Pyrene Excimer Fluorescence of Yeast Alcohol Dehydrogenase: A Sensitive Probe to Investigate Ligand Binding and Unfolding Pathway of the EnzymePHOTOCHEMISTRY & PHOTOBIOLOGY, Issue 2 2006Manas Kumar Santra ABSTRACT The cysteine residues of yeast alcohol dehydrogenase (YADH) were covalently modified by N-(1-pyrenyl) maleimide (PM). A maximum of 3.4 cysteines per YADH monomer could be modified by PM. The secondary structure of PM-YADH was found to be similar to that of the native YADH using far-UV circular dichroism. The covalent modification of YADH by PM inhibited the enzymatic activity indicating that the active site of the enzyme was altered. PM-YADH displayed maximum excimer fluorescence at an incorporation ratio of 2.6 mol of PM per monomeric subunit of YADH. Nucleotide adenine dinucleotide (NAD) divalent zinc and ethanol reduced the excimer fluorescence of PM-YADH indicating that these agents induce conformational changes in the enzyme. Guani-dinium hydrochloride (GdnHCl)-induced unfolding of YADH was analyzed using tryptophan fluorescence, pyrene excimer fluorescence and enzymatic activity. The unfolding of YADH was found to occur in a stepwise manner. The loss of enzymatic activity preceded the global unfolding of the protein. Further, changes in tryptophan fluorescence with increasing GdnHCl suggested that YADH was completely unfolded by 2.5 M GdnHCl. Interestingly, residual structures of YADH were detected even in the presence of 5 M GdnHCl using the excimer fluorescence of PM-YADH. [source] JC-1, a sensitive probe for a simultaneous detection of P-glycoprotein activity and apoptosis in leukemic cellsCYTOMETRY, Issue 3 2006Driss Chaoui Abstract Background JC-1 probe has been successfully used for the analysis of either apoptosis or P-glycoprotein (P-gp) activity. Therefore, we wanted to see if JC-1 could also simultaneously assess both, P-gp activity and apoptosis, in acute myeloid leukemia (AML) cells. Methods P-gp activity was measured using JC-1 and compared to the results of the Rhodamine 123 (Rh 123) assay in P-gp negative and P-gp positive cell lines, and 12 AML samples. For apoptosis, spontaneous apoptosis, as well as, apoptosis induced by Cytosine Arabinosine and Homoharringtonine were analyzed. Both mitochondrial red fluorescence and cytoplasmic green fluorescence of JC-1 with and without a P-gp inhibitor (Cyclosporine A : CsA) were used for the identification of apoptotic cells, and this was compared to Annexin V/PI staining. Results (1) We found a good correlation between JC-1 and Rh 123 in viable cells. Even in a small population of viable cells, P-gp positive cells emitting low red fluorescence, gained on red fluorescence after P-gp inhibition with CsA permitting an evaluation of P-gp activity. (2) We found a good correlation between the Annexin V/PI staining and JC-1 (P < 0.0001) in the assessment of apoptotic cells. Most importantly, the apoptotic cells could be distinguished by the loss of red fluorescence and the increase of green fluorescence without any change after P-gp inhibition with CsA. Conclusions JC-1 can simultaneously evaluate two important parameters involved in drug resistance in AML cells, P-gp activity and apoptosis. © 2006 International Society for Analytical Cytology [source] Homocysteine enhances cardiac neural crest cell attachment in vitro by increasing intracellular calcium levelsDEVELOPMENTAL DYNAMICS, Issue 8 2008David J. Heidenreich Abstract Elevated homocysteine (Hcys) increases the risk of neurocristopathies. Previous studies show Hcys inhibits neural crest (NC) cell migration in vivo. However, the mechanisms responsible for this effect are unknown. Here, we evaluated the effect of Hcys on NC cell attachment in vitro and determined if any of the effects were due to altered Ca2+ signaling. We found Hcys enhanced NC cell attachment in a dose and substrate-dependent manner. Ionomycin mimicked the effect of Hcys while BAPTA-AM and 2-APB blocked the effect of Hcys on NC attachment. In contrast, inhibitors of plasma membrane Ca2+ channels had no effect on NC attachment. Hcys also increased the emission of the intracellular Ca2+ -sensitive probe, Fluo-4. These results show Hcys alters NC attachment by triggering an increase in intracellular Ca2+ possibly by generating inositol triphosphate. Hence, the teratogenic effect ascribed to Hcys may be due to perturbation of intracellular Ca2+ signaling. Developmental Dynamics 237:2117,2128, 2008. © 2008 Wiley-Liss, Inc. [source] The First Example of an Azaphenalene Profluorescent NitroxideEUROPEAN JOURNAL OF ORGANIC CHEMISTRY, Issue 28 2007James P. Blinco Abstract The synthesis of the first example of an azaphenalene-based fused aromatic nitroxide TMAO, [1,1,3,3-tetramethyl-2,3-dihydro-2-azaphenalen-2-yloxyl, (5)], is described. This novel nitroxide possesses some of the structural rigidity of the isoindoline class of nitroxides, as well as some properties akin to TEMPO nitroxides. Additionally, the integral aromatic ring imparts fluorescence that is switched on by radical scavenging reactions of the nitroxide, which makes it a sensitive probe for polymer degradation.(© Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2007) [source] A Valence Photoelectron Imaging Investigation of Chiral Asymmetry in the Photoionization of Fenchone and CamphorCHEMPHYSCHEM, Issue 3 2008Ivan Powis Prof. Abstract Photoelectron circular dichroism (PECD) is investigated in the valence ionization of selected fenchone enantiomers using a photoelectron imaging technique and circularly polarized synchrotron radiation. Theoretical modelling of the results using electron scattering calculations demonstrates that the observed chiral asymmetry in the photoelectron angular distributions depends strongly upon the final state scattering, and upon the quality of the molecular potential used for these calculations. However, very pronounced dependence on the orbital from which ionization occurs is also observed. Comparison with analogous results previously obtained for camphor reveals striking differences in the PECD, even when the ionizing orbitals are themselves left substantially unaffected by the changes in methyl groups' substitution site. PECD measurements readily differentiate these molecules despite their very similar photoelectron spectra, demonstrating PECD to be a structurally sensitive probe. [source] A Novel Proton Sensor with Luminescence and Color Signaling Based on Platinum(II) Terpyridyl Acetylide ComplexCHINESE JOURNAL OF CHEMISTRY, Issue 1 2004Qing-Zheng Yang Abstract A novel sensitive probe for proton based on platinum(II) terpyridyl acetylide complex by monitoring the changes both in luminescence and color is described. [source] Studying porous materials with krypton-83 NMR spectroscopyMAGNETIC RESONANCE IN CHEMISTRY, Issue S1 2007Zackary I. Cleveland Abstract This report is the first review of 83Kr nuclear magnetic resonance as a new and promising technique for exploring the surfaces of solid materials. In contrast to the spin I = 1/2 nucleus of 129Xe, 83Kr has a nuclear spin of I = 9/2 and therefore possesses a nuclear electric quadrupole moment. Interactions of the quadrupole moment with the electronic environment are modulated by surface adsorption processes and therefore affect the 83Kr relaxation rate and spectral lineshape. These effects are much more sensitive probes for surfaces than the 129Xe chemical shielding and provide unique insights into macroporous materials in which the 129Xe chemical shift is typically of little diagnostic value. The first part of this report reviews the effect of quadrupolar interactions on the 83Kr linewidth in zeolites and also the 83Kr chemical shift behavior that is distinct from that of its 129Xe cousin in some of these materials. The second part reviews hyperpolarized (hp) 83Kr NMR spectroscopy of macroporous materials in which the longitudinal relaxation is typically too slow to allow sufficient averaging of thermally polarized 83Kr NMR signals. The quadrupolar-driven T1 relaxation times of hp 83Kr in these materials are sensitive to surface chemistry, surface-to-volume ratios, coadsorption of other species on surfaces, and surface temperature. Thus, 83Kr T1 relaxation can provide information about surfaces and chemical processes in macroscopic pores and can generate surface-sensitive contrast in hp 83Kr MRI. Copyright © 2007 John Wiley & Sons, Ltd. [source] Cosmic flows on 100 h,1 Mpc scales: standardized minimum variance bulk flow, shear and octupole momentsMONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, Issue 4 2010Hume A. Feldman ABSTRACT The low-order moments, such as the bulk flow and shear, of the large-scale peculiar velocity field are sensitive probes of the matter density fluctuations on very large scales. In practice, however, peculiar velocity surveys are usually sparse and noisy, which can lead to the aliasing of small-scale power into what is meant to be a probe of the largest scales. Previously, we developed an optimal ,minimum variance' (MV) weighting scheme, designed to overcome this problem by minimizing the difference between the measured bulk flow (BF) and that which would be measured by an ideal survey. Here we extend this MV analysis to include the shear and octupole moments, which are designed to have almost no correlations between them so that they are virtually orthogonal. We apply this MV analysis to a compilation of all major peculiar velocity surveys, consisting of 4536 measurements. Our estimate of the BF on scales of ,100 h,1 Mpc has a magnitude of |v| = 416 ± 78 km s ,1 towards Galactic l= 282°± 11° and b= 6°± 6°. This result is in disagreement with , cold dark matter with Wilkinson Microwave Anisotropy Probe 5 (WMAP5) cosmological parameters at a high confidence level, but is in good agreement with our previous MV result without an orthogonality constraint, showing that the shear and octupole moments did not contaminate the previous BF measurement. The shear and octupole moments are consistent with WMAP5 power spectrum, although the measurement noise is larger for these moments than for the BF. The relatively low shear moments suggest that the sources responsible for the BF are at large distances. [source] |