Senegalese Sole (senegalese + sole)

Distribution by Scientific Domains


Selected Abstracts


Interactions of microorganisms isolated from gilthead sea bream, Sparus aurata L., on Vibrio harveyi, a pathogen of farmed Senegalese sole, Solea senegalensis (Kaup)

JOURNAL OF FISH DISEASES, Issue 9 2005
M Chabrillón
Abstract Four bacterial isolates from farmed gilthead sea bream, Sparus aurata, included in a previous study as members of the Vibrionaceae and Pseudomonodaceae and the genus Micrococcus, have been evaluated for their adhesive ability to skin and intestinal mucus of farmed Senegalese sole, Solea senegalensis, and their antagonistic effect on Vibrio harveyi, a pathogen of sole. These isolates showed higher adhesion to sole mucus than the pathogenic strains of V. harveyi assayed. Only two of the isolates showed antagonistic activity to V. harveyi. Interactions of the four isolates with V. harveyi in respect of adhesion to skin and intestinal mucus under exclusion, competition and displacement conditions were studied. Three isolates were able to reduce the attachment to skin and intestinal sole mucus of a pathogenic strain of V. harveyi under displacement and exclusion conditions, but not under competition conditions. The in vivo probiotic potential of isolate Pdp11 was assessed by oral administration followed by challenge with the pathogenic V. harveyi strain Lg14/00. A group of 50 Senegalese sole received a commercial diet supplemented with 108 cfu g,1 of lyophilized Lg14/00 for 15 days. A second group of fish received a non-supplemented commercial diet. After challenge the mortality of the fish receiving the diet supplemented with the potential probiotic isolate was significantly lower than that in the fish receiving the non-supplemented commercial diet. This study has shown that the ability to interfere with attachment of pathogens, as well as the adhesion to host surfaces, are suitable criteria for selection of candidate probiotics for use in the culture of Senegalese sole. [source]


Senegalese sole larvae growth and protein utilization is depressed when co-fed high levels of inert diet and Artemia since first feeding

AQUACULTURE NUTRITION, Issue 5 2010
S. ENGROLA
Abstract A large effort has been dedicated in the past years to the development of nutritional balanced inert diets for marine fish larvae in order to suppress the nutritional deficiencies of live feed. In this study growth performance, Artemia intake, protein digestibility and protein retention were measured for Senegalese sole (Solea senegalensis Kaup), in order to provide insight into how protein utilization affects growth performance. Three feeding regimes were tested: ST , standard live feed; ArtRL , live feed and 20%Artemia replacement with inert diet (dry matter basis) from mouth opening; ArtRH , live feed and 58%Artemia replacement with inert diet from mouth opening. Artemia intake and protein metabolism were determined at 6, 15 and 21 days after hatching using 14C-labelled Artemia protein and subsequent incubation in metabolic chambers. At the end of the experiment, sole fed exclusively with live feed were significantly larger than sole from Artemia replacement treatments. Protein digestibility decreased during sole ontogeny, and more sharply in ArtRH sole. Concomitantly retention efficiency increased during ontogeny but with a slight delay in ArtRH sole. Senegalese sole larvae growth and protein utilization is depressed when co-fed high levels of inert diet and Artemia, mostly during metamorphosis climax. [source]


Effect of dietary administration of probiotics on growth and intestine functionality of juvenile Senegalese sole (Solea senegalensis, Kaup 1858)

AQUACULTURE NUTRITION, Issue 2 2009
M.A. SÁENZ de RODRIGÁÑEZ
Abstract The effects of the dietary administration of two bacterial probiotic strains (Ppd11 and Pdp13) from the Alteromonadaceae family for 60 days, were assessed by measuring growth and feed efficiency, activities of leucine aminopeptidase and alkaline phosphatase and structural changes in the intestine of juvenile Senegalese sole. In addition, the profile of intestinal microbiota was studied by Denaturing Gradient Gel Electrophoresis. Growth and nutrient utilization were significantly higher in fish receiving probiotics than in those fed the control diet. No differences were observed in proximal composition between treatments, though higher lipid muscle content was measured in fish receiving Pdp13. Those fish also exhibited higher activities of AP when compared to Ppd11 and control groups. The profile of intestinal microbiota clearly separated those fish receiving probiotics from those of the control group. Microscopical examination revealed accumulation of lipid droplets in the enterocytes of fish receiving the control diet, but not in those fed on probiotics. Interactions between those structural changes and growth performance are discussed. [source]


Feed intake and growth performance of Senegalese sole (Solea senegalensis Kaup, 1858) fed diets with partial replacement of fish meal with plant proteins

AQUACULTURE RESEARCH, Issue 9 2010
Joana M G Silva
Abstract To be able to study nutrient requirement and utilization in any species, a diet supporting normal feed intake and growth equally well as a traditional fish meal-based diet is needed. Additionally the formulation of the diet should allow low levels of the nutrient under study. When studying the amino acid metabolism and requirements, one cannot rely on the fish meal-based diets as fish meal are nicely balanced according to requirements. Therefore the current study aimed to develop a plant protein-based diet (with low fish meal inclusion) to be used in the nutritional studies of Senegalese sole juveniles supporting feed intake and growth close to that obtained in a fish meal-based control feed. Two experiments were conducted to evaluate whether Senegalese sole juveniles would accept and utilize diets containing high plant protein inclusion. For testing the acceptance of high plant protein inclusion, two diets were formulated: a reference diet that contained fish meal as the main protein source (450 g kg,1 dry matter) whereas in the test diet, fish meal was substituted by a mixture of plant ingredients (soybean meal, corn and wheat gluten) with l -lysine supplementation. In order to improve the palatability, 50 g kg,1 squid meal was added to both diets. The indispensable amino acids (IAA) profile of the test diet was made similar to the control diet by adding crystalline amino acids. Further, automatic feeders were used to improve the feed intake. Fish (24 g initial body weight) were fed the diets for a period of 4 weeks. As fish accepted both diets equally well, a second study was undertaken to test the growth performance. Fish (6 g initial BW) were fed the diets for a period of 12 weeks. The use of automatic feeders to deliver the feed and the addition of both squid and balancing the indispensable amino acids resulted in growth performance and accretion not differing from the fish meal fed control. It can be concluded that juvenile Senegalese sole are able to grow and utilize high plant-protein diets when both diet composition and feeding regime are adequate for this species. [source]


Comparing skeletal development of wild and hatchery-reared Senegalese sole (Solea senegalensis, Kaup 1858): evaluation in larval and postlarval stages

AQUACULTURE RESEARCH, Issue 14 2009
Paulo Jorge Gavaia
Abstract The Senegalese sole is a marine pleuronectiform that naturally occurs in Southern Europe and Mediterranean region where it is being produced in aquaculture, in particular in Portugal and Spain. The aim of this study was to assess the quality of hatchery-reared larvae in comparison with those reared in the wild, and determine to which extension wild growing larvae are also affected by skeletal deformities. The main structures affected included those forming the axial skeleton, the caudal fin complex and both anal and dorsal fins, with the most prevalent anomalies affecting caudal vertebrae and arches. Hatchery-reared fish presented a higher incidence of deformities (79%) compared with the 19% observed in wild specimens. In wild postlarvae collected in Autumn no deformities were observed. This work clearly shows that wild Senegalese sole present less skeletal deformities than those hatchery-reared during larval stages, indicating a selective mortality of wild deformed fish and/or an effect of aquaculture-related rearing conditions in the development of skeletal deformities in sole. [source]


Intestinal microbiota variation in Senegalese sole (Solea senegalensis) under different feeding regimes

AQUACULTURE RESEARCH, Issue 11 2007
Beatriz Martin-Antonio
Abstract The aim of this study was to determine the influence of the feeding regimes in Senegalese sole (Solea senegalensis) cultured under extensive, semi-extensive and intensive production systems. A total of 254 bacterial isolates from guts of fish cultured under different production systems and feeding regimes were tested. Biochemical tests and genetic analyses based on the 16S rDNA sequence analysis were conduced to identify bacterial strains. Vibrio species were the most represented taxonomic group in the culturable microbiota of S. senegalensis guts tested. Particularly, Vibrio ichthyoenteri was the most frequently isolated Vibrio species. Comparison among diets showed a significant reduction (P<0.05) in vibrio percentages and a higher occurrence of Shewanella species in Senegalese soles fed polychaeta. In addition, a major influence of environmental temperature on microbiota composition was detected. Cold temperatures brought about a change in the percentages of Vibrio species and a higher representation of ,-Proteobacteria in both outdoor systems (extensive and semi-extensive). The significant differences between intestinal bacterial composition in Senegalese soles fed commercial diets and natural preys (polychaeta) reveal the necessity to develop specific optimized diets for the intensive rearing of this fish species. [source]