Selective Recruitment (selective + recruitment)

Distribution by Scientific Domains


Selected Abstracts


Ligand binding of leukocyte integrin very late antigen-4 involves exposure of sulfhydryl groups and is subject to redox modulation

EUROPEAN JOURNAL OF IMMUNOLOGY, Issue 2 2008
Si-Yen Liu
Abstract Activation of leukocyte integrins is important for selective recruitment of cells from the circulation to tissues. Our previous studies showed that the binding between the integrin very late antigen-4 (VLA-4) and vascular cell adhesion molecule-1 (VCAM-1) is modulated by reactive oxygen species. In this study, we investigated the molecular nature of redox modulation on the activation states of VLA-4 on human leukocytes. We found that ligand binding of VLA-4 induced exposure of sulfhydryl groups on the ,4 peptide. Low concentrations (5,10,µM) of exogenous hydrogen peroxide in the presence or absence of added glutathione enhanced the ligand binding ability of VLA-4 to VCAM-1 and cell rolling on VCAM-1, while higher concentrations (,100,µM) of hydrogen peroxide inhibited the binding. Exogenous hydrogen peroxide and glutathione induced molecular modification of S -glutathionylation on the ,4 peptide. The redox regulation of the VLA-4 binding activity required outside-in signaling and cytoskeleton rearrangement. Our results indicate that ligand binding of VLA-4 involves redox modulations which may play a pivotal role in regulating the activation states of VLA-4 in inflammatory tissues and hence direct leukocyte trafficking. [source]


Up-regulation of leukocyte CXCR4 expression by sulfatide: An L-selectin-dependent pathway on CD4+ T cells

EUROPEAN JOURNAL OF IMMUNOLOGY, Issue 10 2007
Pascal Duchesneau
Abstract CXCR4 plays significant roles in immune and inflammatory responses and is important for selective recruitment of leukocytes. We previously showed that CXCR4 surface expression of human lymphocytes was affected by sulfatide, an in vivo ligand for L-selectin. Increased CXCR4 expression was shown to promote biologically relevant functions such as integrin-dependent adhesion and transmigration. Here, we show that sulfatide-induced CXCR4 up-regulation also occurs on other leukocyte subsets in humans and mice. B cells and CD4+CD25+ T cells had the highest CXCR4 up-regulation after sulfatide stimulation. Transfection of L-selectin was sufficient for K562 cells to acquire sulfatide-induced CXCR4 up-regulation, while analysis of L-selectin knockout mice revealed that this response was critically L-selectin dependent only for CD4+ T cells, suggesting an alternative pathway in CD8+ T cells and B cells. Sulfatide triggered several intracellular signaling events in CD4+ T cells, but only tyrosine kinase activation, including members of the Src family, were essential for L-selectin to CXCR4 signaling. CXCR4 up-regulation was rapid, enhanced CXCL12-induced signaling and increased chemotaxis toward CXCL12, and therefore has potentially important roles in vivo. Thus, the response to CXCL12 depends in part on tissue expression of sulfatide and, specifically in CD4+ T cells, also depends on the surface level of L-selectin. [source]


The 21st century renaissance of the basophil?

EXPERIMENTAL DERMATOLOGY, Issue 11 2006
Current insights into its role in allergic responses, innate immunity
Abstract:, Basophils and mast cells express all the three subchains of the high-affinity immunoglobulin E (IgE) receptor Fc,RI and contain preformed histamine in the cytoplasmic granules. However, it is increasingly clear that these cells play distinct roles in allergic inflammatory disease. Despite their presence throughout much of the animal kingdom, the physiological function of basophils remains obscure. As rodent mast cells are more numerous than basophils, and generate an assortment of inflammatory cytokines, basophils have often been regarded as minor players in allergic inflammation. In humans, however, basophils are the prime early producers of interleukin (IL)-4 and IL-13, T helper (Th)2-type cytokines crucial for initiating and maintaining allergic responses. Basophils also express CD40 ligand which, in combination with IL-4 and IL-13, facilitates IgE class switching in B cells. They are the main cellular source for early IL-4 production, which is vital for the development of Th2 responses. The localization of basophils in various tissues affected by allergic inflammation has now been clearly demonstrated by using specific staining techniques and the new research is shedding light on their selective recruitment to the tissues. Finally, recent studies have shown that basophil activation is not restricted to antigen-specific IgE crosslinking, but can be caused in non-sensitized individuals by a growing list of parasitic antigens, lectins and viral superantigens, binding to non-specific IgE antibodies. This, together with novel IgE-independent routes of activation, imparts important new insights into the potential role of basophils in both adaptive and innate immunity. [source]


Tactile discrimination of grating orientation: fMRI activation patterns

HUMAN BRAIN MAPPING, Issue 4 2005
Minming Zhang
Abstract Grating orientation discrimination is employed widely to test tactile spatial acuity. We used functional magnetic resonance imaging (fMRI) to investigate the neural circuitry underlying performance of this task. Two studies were carried out. In the first study, an extensive set of parietal and frontal cortical areas was activated during covert task performance, relative to a rest baseline. The active regions included the postcentral sulcus bilaterally and foci in the left parietal operculum, left anterior intraparietal sulcus, and bilateral premotor and prefrontal cortex. The second study examined selective recruitment of cortical areas during discrimination of grating orientation (a task with a macrospatial component) compared to discrimination of grating spacing (a purely microspatial task). The foci activated on this contrast were in the left anterior intraparietal sulcus, right postcentral sulcus and gyrus, left parieto-occipital cortex, bilateral frontal eye fields, and bilateral ventral premotor cortex. These findings not only confirm and extend previous studies of the neural processing underlying grating orientation discrimination, but also demonstrate that a distributed network of putatively multisensory areas is involved. Hum Brain Mapp, 2005. © 2005 Wiley-Liss, Inc. [source]


Alterations of the synovial T cell repertoire in anti,citrullinated protein antibody,positive rheumatoid arthritis,

ARTHRITIS & RHEUMATISM, Issue 7 2009
Tineke Cantaert
Objective The association of HLA,DRB1 alleles with anti,citrullinated protein antibodies (ACPAs) in rheumatoid arthritis (RA) suggests the potential involvement of T lymphocytes in ACPA-seropositive disease. The purpose of this study was to investigate this hypothesis by systematic histologic and molecular analyses of synovial T cells in ACPA+ versus ACPA, RA patients. Methods Synovial biopsy samples were obtained from 158 RA patients. Inflammation was determined histologically and immunohistochemically. RNA was extracted from peripheral blood mononuclear cells and synovial tissues obtained from 11 ACPA+ RA patients, 7 ACPA, RA patients, and 10 spondylarthritis (SpA) patients (arthritis controls). T lymphocyte clonality was studied by combined quantitative and qualitative T cell receptor CDR3 length distribution (LD) analysis and direct sequencing analysis. Results ACPA+ and ACPA, RA patients were similar at both the clinical and histologic levels. At the molecular level, however, patients with ACPA+ synovitis displayed a marked elevation of qualitative CDR3 LD alterations as compared with those with ACPA, synovitis and with the SpA controls. These differences in CDR3 LD were not observed in the peripheral blood, indicating a selective recruitment and/or local expansion of T cells in the synovial compartment. The CDR3 LD alterations reflected true monoclonal or oligoclonal expansions, as confirmed by direct sequencing of the T cell receptor. The CDR3 LD alterations in RA synovium did not correlate with B cell clonal expansions but were inversely associated with synovial lymphoid neogenesis. Conclusion The T cell repertoire is specifically restricted in RA patients with ACPA+ synovitis. Whereas the origin and role of these clonal alterations remain to be determined, our data suggest the preferential involvement of T lymphocytes in ACPA-seropositive RA. [source]


Induction of CCR2-dependent macrophage accumulation by oxidized phospholipids in the air-pouch model of inflammation

ARTHRITIS & RHEUMATISM, Issue 5 2009
Alexandra Kadl
Objective Macrophages are key players in the pathogenesis of rheumatoid synovitis as well as in atherosclerosis. To determine whether atherogenic oxidized phospholipids potentially contribute to synovial inflammation and subsequent monocyte/macrophage recruitment, we examined the effects of oxidized 1- palmitoyl-2-arachidonoyl- sn -3-glycero-phosphorylcholine (OxPAPC) on chemokine expression and leukocyte recruitment in a facsimile synovium in vivo using the murine air-pouch model. Methods Air pouches were raised by 2 injections of sterile air, and inflammation was induced by injecting either lipopolysaccharide (LPS) or OxPAPC into the pouch lumen. Inflammation was assessed by analysis of inflammatory gene expression using reverse transcription,polymerase chain reaction or immunohistochemical analysis, and leukocytes were quantified in the lavage fluid and in the pouch wall after staining with Giemsa or after enzymatic digestion followed by fluorescence-activated cell sorter analysis. Results Application of OxPAPC resulted in selective recruitment of monocyte/macrophages into the air-pouch wall, but not in the lumen. In contrast, LPS induced both monocyte and neutrophil accumulation in the pouch lumen as well as in the wall. LPS, but not OxPAPC, induced the expression of adhesion molecules E-selectin, P-selectin, intercellular adhesion molecule 1, and vascular cell adhesion molecule 1. OxPAPC increased the expression of the CCR2 ligands monocyte chemotactic protein 1 (MCP-1), MCP-3, and MCP-5, as well as RANTES and growth-related oncogene , (GRO,), while it down-regulated the expression of CCR2 on macrophages. Moreover, oxidized phospholipid,induced macrophage accumulation was abrogated in CCR2,/, mice. Conclusion These data demonstrate that oxidized phospholipids trigger a type of inflammatory response that leads to selective macrophage accumulation in vivo, a process relevant for the pathogenesis of chronic inflammatory rheumatic diseases. [source]