Selective Recognition (selective + recognition)

Distribution by Scientific Domains


Selected Abstracts


Towards Selective Recognition of Sialic Acid Through Simultaneous Binding to Its cis -Diol and Carboxylate Functions

EUROPEAN JOURNAL OF ORGANIC CHEMISTRY, Issue 17 2010
Martín Regueiro-Figueroa
Abstract A series of receptors containing phenylboronic acid and urea or thiourea units have been designed for simultaneous recognition of the cis -diol and carboxylate functions of sialic acids, which are known to be overexpressed on the surfaces of tumor cells. The interaction of the receptors with 5-acetylneuraminic acid (Neu5Ac) and 2-,- O -methyl Neu5Ac (MeNeu5Ac) in DMSO solution has been investigated bymeans of spectrophotometric titrations and 1H, 13C, and 11B NMR spectroscopy. Additionally, we have also investigated the binding of these receptors with competing monosaccharides such as D -(+)-glucose, D -fructose, methyl ,- D -galactoside, and methyl ,- D -mannoside. Our results show that 2-{[3-(4-nitrophenyl)thioureido]methyl}phenylboronic acid (3a) recognizes both Neu5Ac and MeNeu5Ac with good selectivity with regard to the remaining monosaccharides investigated. DFT calculations performed at the B3LYP/6-31G(d) level show that this selectivity is due to a cooperative two-site binding of Neu5Ac through 1) ester formation by interaction at the phenylboronic acid function of the receptor and 2) hydrogen-bond interaction between the thiourea moiety and the carboxylate group of Neu5Ac. Compound 3a can therefore be considered a promising synthon for the design of contrast agents for magnetic resonance imaging of tumors. In contrast, the analogue of 3a containing a urea moiety , compound 3b , displays strong binding to all monosaccharides investigated, due to two-site binding through interaction on the phenylboronic acid function of the receptor and a hydrogen-bond interaction between the urea moiety and the sugar hydroxy groups. [source]


Selective recognition of thymidine homopolymer (poly T) oligonucleotide with cobalt(II),4-[(5-chloro-2-pyridyl)azo]-1,3-diaminobenzene complex

LUMINESCENCE: THE JOURNAL OF BIOLOGICAL AND CHEMICAL LUMINESCENCE, Issue 3 2009
Feng Ling Guo
Abstract The interactions of cobalt(II),4-[(5-chloro-2-pyridyl)azo]-1,3-diaminobenzene (5-Cl-PADAB) complex with different kinds of homopolymer oligonucleotides in basic medium were investigated based on the measurements of resonance light scattering, UV,vis, circular dichroism spectra and dark field light-scattering imaging. Experiments showed that only thymidine homopolymer (poly T) oligonucleotides with the length in the range of poly T6 to poly T18 could interact with the Co(II),5-Cl-PADAB complex in alkaline conditions and cause evident color and spectral change. Thus, the binary complex of Co(II),5-Cl-PADAB could be employed as a visual probe for selectively recognizing the poly T oligonucleotides. Copyright © 2009 John Wiley & Sons, Ltd. [source]


Novel Potentiometric Sensors of Molecular Imprinted Polymers for Specific Binding of Chlormequat

ELECTROANALYSIS, Issue 2 2008
Ayman
Abstract Molecularly imprinted polymers (MIP) were used as potentiometric sensors for the selective recognition and determination of chlormequat (CMQ). They were produced after radical polymerization of 4-vinyl pyridine (4-VP) or methacrylic acid (MAA) monomers in the presence of a cross-linker. CMQ was used as template. Similar non-imprinted (NI) polymers (NIP) were produced by removing the template from reaction media. The effect of kind and amount of MIP or NIP sensors on the potentiometric behavior was investigated. Main analytical features were evaluated in steady and flow modes of operation. The sensor MIP/4-VP exhibited the best performance, presenting fast near-Nernstian response for CMQ over the concentration range 6.2×10,6,1.0×10,2,mol L,1 with detection limits of 4.1×10,6,mol L,1. The sensor was independent from the pH of test solutions in the range 5,10. Potentiometric selectivity coefficients of the proposed sensors were evaluated over several inorganic and organic cations. Results pointed out a good selectivity to CMQ. The sensor was applied to the potentiometric determination of CMQ in commercial phytopharmaceuticals and spiked water samples. Recoveries ranged 96 to 108.5%. [source]


Networks for recognition of biomolecules: molecular imprinting and micropatterning poly(ethylene glycol)- Containing films,

POLYMERS FOR ADVANCED TECHNOLOGIES, Issue 10-12 2002
Mark E. Byrne
Abstract Engineering the molecular design of biomaterials by controlling recognition and specificity is the first step in coordinating and duplicating complex biological and physiological processes. Studies of protein binding domains reveal molecular architectures with specific chemical moieties that provide a framework for selective recognition of target biomolecules in aqueous environment. By matching functionality and positioning of chemical residues, we have been successful in designing biomimetic polymer networks that specifically bind biomolecules in aqueous environments. Our work addresses the preparation, behavior, and dynamics of the three-dimensional structure of biomimetic polymers for selective recognition via non-covalent complexation. In particular, the synthesis and characterization of recognitive gels for the macromolecular recognition of D -glucose is highlighted. Novel copolymer networks containing poly(ethylene glycol) (PEG) and functional monomers such as acrylic acid, 2-hydroxyethyl methacrylate, and acrylamide were synthesized in dimethyl sulfoxide (polar, aprotic solvent) and water (polar, protic solvent) via UV-free radical polymerization. Polymers were characterized by single and competitive equilibrium and kinetic binding studies, single and competitive fluorescent and confocal microscopy studies, dynamic network swelling studies, and ATR-FTIR. Results qualitatively and quantitatively demonstrate effective glucose-binding polymers in aqueous solvent. Owing to the presence of template, the imprinting process resulted in a more macroporous structure as exhibited by dynamic swelling experiments and confocal microscopy. Polymerization kinetic studies suggest that the template molecule has more than a dilution effect on the polymerization, and the effect of the template is related strongly to the rate of propagation. In addition, PEG containing networks were micropatterned to fabricate microstructures, which would be the basis for micro-diagnostic and tissue engineering devices. Utilizing photolithography techniques, polymer micropatterns of a variety of shapes and dimensions have been created on polymer and silicon substrates using UV free-radical polymerizations with strict spatial control. Micropatterns were characterized using optical microscopy, SEM, and profilometry. The processes and analytical techniques presented are applicable to other stimuli-sensitive and recognitive networks for biomolecules, in which hydrogen bonding, hydrophobic, or ionic contributions will direct recognition. Further developments are expected to have direct impact on applications such as analyte controlled and modulated drug and protein delivery, drug and biological elimination, drug targeting, tissue engineering, and micro- or nano-devices. This work is supported by NSF Grant DGE-99-72770. Copyright © 2003 John Wiley & Sons, Ltd. [source]