Home About us Contact | |||
Selective Lesions (selective + lesion)
Selected AbstractsSelective lesion of retrotrapezoid Phox2b-expressing neurons raises the apnoeic threshold in ratsTHE JOURNAL OF PHYSIOLOGY, Issue 12 2008Ana C. Takakura Injection of the neurotoxin saporin,substance P (SSP-SAP) into the retrotrapezoid nucleus (RTN) attenuates the central chemoreflex in rats. Here we ask whether these deficits are caused by the destruction of a specific type of interneuron that expresses the transcription factor Phox2b and is non-catecholaminergic (Phox2b+TH,). We show that RTN contains around 2100 Phox2b+TH, cells. Injections of SSP-SAP into RTN destroyed Phox2b+TH, neurons but spared facial motoneurons, catecholaminergic and serotonergic neurons and the ventral respiratory column caudal to the facial motor nucleus. Two weeks after SSP-SAP, the apnoeic threshold measured under anaesthesia was unchanged when fewer than 57% of the Phox2b+TH, neurons were destroyed. However, destruction of 70 ± 3.5% of these cells was associated with a dramatic rise of the apnoeic threshold (from 5.6 to 7.9% end-expiratory P). In anaesthetized rats with unilateral lesions of around 70% of the Phox2b+TH, neurons, acute inhibition of the contralateral intact RTN with muscimol instantly eliminated phrenic nerve discharge (PND) but normal PND could usually be elicited by strong peripheral chemoreceptor stimulation (8/12 rats). Muscimol had no effect in rats with an intact contralateral RTN. In conclusion, the destruction of the Phox2b+TH, neurons is a plausible cause of the respiratory deficits caused by injection of SSP-SAP into RTN. Two weeks after toxin injection, 70% of these cells must be killed to cause a severe attenuation of the central chemoreflex under anaesthesia. The loss of an even greater percentage of these cells would presumably be required to produce significant breathing deficits in the awake state. [source] Selective lesions of basal forebrain cholinergic neurons produce anterograde and retrograde deficits in a social transmission of food preference task in ratsEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 6 2002Anna Vale-Martínez Abstract We examined the performance of Long-Evans rats with 192 IgG-saporin lesions of the medial septum/vertical limb of the diagonal band (MS/VDB) or nucleus basalis magnocellularis/substantia innominata (NBM/SI), which removed cholinergic projections mainly to hippocampus or neocortex, respectively. We studied the effects of these lesions on anterograde and retrograde memory for a natural form of hippocampal-dependent associative memory, the social transmission of food preference. In a study of anterograde memory, MS/VDB lesions did not affect the immediate, 24-h or 3-week retention of the task. In contrast, NBM/SI lesions severely impaired immediate and 24-h retention. In a study of retrograde memory in which rats acquired the food preference 5 days or 1 day before surgery and they were tested 10,11 days after surgery, MS/VDB-lesioned rats showed striking memory deficits for the preference acquired at a long delay (5 days) before surgery, although all lesioned rats exhibited poorer retention on both retest sessions than on their pretest performance. Subsequent testing of new anterograde learning in these rats revealed no disrupting effects of lesions on a standard two-choice test. When rats were administered a three-choice test, in which the target food was presented along with two more options, NBM/SI-lesioned rats were somewhat impaired on a 24-h retention test. These results provide evidence that NBM/SI and MS/VDB cholinergic neurons are differentially involved in a social memory task that uses olfactory cues, suggesting a role for these neurons in acquisition and consolidation/retrieval of nonspatial declarative memory. [source] Protocol for clinical neurophysiologic examination of the pelvic floorNEUROUROLOGY AND URODYNAMICS, Issue 6 2001Simon Podnar Abstract Clinical neurophysiologic examination of the pelvic floor is performed worldwide, but there is no consensus on the choice of tests, nor on technical details of individual methods. Standardized methods are, however, necessary to obtain their valid application in different laboratories for the purpose of collection of normative data, comparison of patient data and organization of multi-center studies. It is proposed that in patients with suspected "lower motor neuron" type lesions concentric needle electromyography (CNEMG) is the most informative test to detect pelvic floor denervation/reinnervation, and the external anal sphincter (EAS) muscle is the most appropriate muscle to be examined (either in isolation,when a selective lesion is suspected,or in addition to examination of other muscles). An algorithm consisting of standardized tests including a standardized approach to CNEMG examination of the EAS is presented. The proposed electrophysiologic assessment consists of a computer-assisted analysis of denervation and reinnervation features of the CNEMG signal, a qualitative assessment of reflex and voluntary activation of EAS motor units, and of electrical (or mechanical) elicitation of the bulbocavernosus reflex in those patients in whom manual anogenital stimulation failed to elicit a robust response in the EAS. The proposed protocol could serve as a basis for further studies on validity, sensitivity and specificity of electrophysiologic assessment in patients with different types of "lower motor neuron" involvement of pelvic floor muscles and sacral dysfunction. Neurourol. Urodynam. 20:669,682, 2001. © 2001 Wiley-Liss, Inc. [source] Regulation of sympathetic tone and arterial pressure by rostral ventrolateral medulla after depletion of C1 cells in ratTHE JOURNAL OF PHYSIOLOGY, Issue 1 2000Ann M. Schreihofer 1In this study we examined whether the rostral ventrolateral medulla (RVLM) maintains resting sympathetic vasomotor tone and activates sympathetic nerve activity (SNA) after the depletion of bulbospinal C1 adrenergic neurones. 2Bulbospinal C1 cells were destroyed (,84% loss) by bilateral microinjections (spinal segments T2 -T3) of an anti-dopamine-,-hydroxylase antibody conjugated to the ribosomal toxin saporin (anti-D,H-SAP). 3Extracellular recording and juxtacellular labelling of bulbospinal barosensitive neurones in the RVLM revealed that treatment with anti-D,H-SAP spared the lightly myelinated neurones with no tyrosine hydroxylase immunoreactivity. 4In rats treated with anti-D,H-SAP, inhibition of RVLM neurones by bilateral microinjection of muscimol eliminated splanchnic SNA and produced the same degree of hypotension as in control rats. 5Following treatment with anti-D,H-SAP the sympathoexcitatory (splanchnic nerve) and pressor responses to electrical stimulation of the RVLM were reduced. 6Treatment with anti-D,H-SAP also eliminated the majority of A5 noradrenergic neurones. However, rats with selective lesion of A5 cells by microinjection of 6-hydroxydopamine into the pons showed no deficits to stimulation of the RVLM. 7In summary, the loss of 84% of bulbospinal adrenergic neurones does not alter the ability of RVLM to maintain SNA and arterial pressure at rest in anaesthetized rats, but this loss reduces the sympathoexcitatory and pressor responses evoked by RVLM stimulation. The data suggest sympathoexcitatory roles for both the C1 cells and non-C1 cells of the RVLM and further suggest the C1 cells are critical for the full expression of sympathoexcitatory responses generated by the RVLM. [source] Contrasting effects of selective lesions of nucleus accumbens core or shell on inhibitory control and amphetamine-induced impulsive behaviourEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 2 2008E. R. Murphy Abstract The core and shell subregions of the nucleus accumbens receive differential projections from areas of the medial prefrontal cortex that have dissociable effects on impulsive and perseverative responding. The contributions of these subregions to simple instrumental behaviour, inhibitory control and behavioural flexibility were investigated using a ,forced choice' task, various parameter manipulations and an omission schedule version of the task. Post-training, selective core lesions were achieved with microinjections of quinolinic acid and shell lesions with ibotenic acid. After a series of behavioural task manipulations, rats were re-stabilized on the standard version of the task and challenged with increasing doses of d - amphetamine (vehicle, 0.5 or 1.0 mg/kg i.p. 30 min prior to test). Neither core- nor shell-lesioned rats exhibited persistent deficits in simple instrumental behaviour or challenges to behavioural flexibility or inhibitory control. Significant differences between lesion groups were unmasked by d- amphetamine challenge in the standard version of the forced task. Core lesions potentiated and shell lesions attenuated the dose-dependent effect of d- amphetamine on increasing anticipatory responses seen in sham rats. These data imply that the accumbens core and shell subregions do not play major roles in highly-trained task performance or in challenges to behavioural control, but may have opposed effects following d- amphetamine treatment. Specifically, they suggest the shell subregion to be necessary for dopaminergic activation driving amphetamine-induced impulsive behaviour and the core subregion for the normal control of this behaviour via conditioned influences. [source] The influence of selective lesions to components of the hippocampal system on the orienting response, habituation and latent inhibitionEUROPEAN JOURNAL OF NEUROSCIENCE, Issue 6 2002Article first published online: 28 JUN 200 First page of article [source] Environment-spatial conditional learning in rats with selective lesions of medial septal cholinergic neuronsHIPPOCAMPUS, Issue 2 2004Agnieszka M. Janisiewicz Abstract Cholinergic medial septal neurons may regulate several aspects of hippocampal function, including place field stability and spatial working memory. Monkeys with damage to septal cholinergic neurons are impaired in visual-spatial conditional learning tasks; however, this candidate function of septal cholinergic neurons has not been studied extensively in the rat. In the present study, rats with selective lesions of cholinergic neurons in the medial septum and vertical limb of the diagonal band of Broca (MS/VDB), made with 192 IgG-saporin, were tested on a conditional associative learning task. In this task, which we term "environment-spatial" conditional learning, the correct location of a spatial response depended on the array of local environmental cues. MS/VDB-lesioned rats were impaired when the two parts of the conditional problem were presented concurrently, but not when one environment had been learned before the full conditional problem was presented. Our findings suggest that cholinergic MS/VDB neurons participate in some aspects of conditional associative learning in rats. They may also shed light on the involvement of cholinergic projections to the hippocampus in modulating and remodeling hippocampal spatial representations. © 2004 Wiley-Liss, Inc. [source] |