Home About us Contact | |||
Selective Imaging (selective + imaging)
Selected AbstractsSelective imaging of positively charged polar and nonpolar lipids by optimizing matrix solution compositionRAPID COMMUNICATIONS IN MASS SPECTROMETRY, Issue 20 2009Yuki Sugiura Previous studies have shown that matrix-assisted laser desorption/ionization,imaging mass spectrometry (MALDI-IMS) is useful for studying the distribution of various small metabolites, particularly lipids. However, in this technique, selective ionization of the target molecules is imperative, particularly when analyzing small molecules. Since the sample clean-up procedures available for the MALDI-IMS of small metabolites are limited, the tissue sample will contain numerous molecular species other than the target molecules. These molecules will compete for ionization resulting in severe ion suppression. Hence, it is necessary to develop and optimize a sample preparation protocol for the target molecules. In this study, through model experiments using reference compounds, we optimized the composition of the matrix solution used for positively charged lipids in terms of the concentration of the organic solvent and presence/absence of alkali metal salts. We demonstrated that a high concentration of organic solvent in the matrix solution favors the preferential detection of lipids over peptides. The presence of alkali metal salts in the matrix solution was favorable for the detection of polar lipids, while a salt-free matrix solution was suitable for the detection of nonpolar lipids. Furthermore, potassium salts added to the matrix solution caused merging of various lipid adducts (adducts with proton, sodium, and potassium) into one single potassiated species. Using the optimized protocols, we selectively analyzed phosphatidylcholine (PC) and triacylglycerol (TG) with different fatty acid compositions in a rat kidney section. Copyright © 2009 John Wiley & Sons, Ltd. [source] Holographic digital Fourier microscopy for selective imaging of biological tissueINTERNATIONAL JOURNAL OF IMAGING SYSTEMS AND TECHNOLOGY, Issue 6 2004Sergey A. Alexandrov Abstract We present an application of digital Fourier holography for selective imaging of scatterers with different sizes in turbid media such as biological tissues. A combination of Fourier holography and high-resolution digital recording, digital Fourier microscopy (DFM) permits crucial flexibility in applying filtering to highlight scatterers of interest in the tissue. The high-resolution digital hologram is a result of the collation of Fourier holographic frames to form a large-size composite hologram. It is expected that DFM has an improved signal-to-noise ratio as compared to conventional direct digital imaging, e.g., phase microscopy, as applied to imaging of small-size objects. The demonstration of the Fourier filtering capacity of DFM using a biological phantom represents the main focus of this article. © 2005 Wiley Periodicals, Inc. Int J Imaging Syst Technol, 14, 253,258, 2004; Published online inWiley InterScience (www.interscience.wiley.com). DOI 10.1002/ima.20031 [source] Synthesis of (R)- and (S)-[O-methyl - 11C]N -[2-[3-(2-cyano-phenoxy)-2-hydroxy-propylamino]-ethyl]- N,-(4-methoxy-phenyl)-urea as candidate high affinity ,1 -adrenoceptor PET radioligandsJOURNAL OF LABELLED COMPOUNDS AND RADIOPHARMACEUTICALS, Issue 10 2005Stefan Wagner Abstract Molecular imaging and quantification of myocardial ,1 -adrenoceptor (AR) rather than total , -AR density is of great clinical interest since cardiac biopsy studies suggest that myocardial ,1 -AR density is reduced in patients with chronic heart failure whereas cardiac ,2 -AR density may vary. Positron emission tomography (PET), with appropriate radioligands, offers the possibility to assess , -AR density non-invasively in humans. However, no PET radioligand for the selective imaging of cardiac ,1 -ARs is clinically available. Here some derivatives of the well characterized ,1 -AR selective antagonist, ICI 89,406, namely the enantiomers of N -[2-[3-(2-cyano-phenoxy)-2-hydroxy-propylamino]-ethyl]- N,-(4-hydroxy-phenyl)-urea (5a and 5b) were synthesized and evaluated in vitro. The (R)-isomer 5a was more ,1 -selective but has lower affinity than its (S)-enantiomer 5b (,1 -AR selectivity: 6100 vs 1240; ,1 -affinity: K1 = 0.288 nM vs K1 = 0.067 nM). Etherification of the analogous desmethyl precursors, 5e and 5f, respectively, with [11C]iodomethane gave 11C-labelled versions of 5a and 5b, namely 5g and 5h, in 44 ± 5% radiochemical yield (decay-corrected) and 97.4 ± 1.3% radiochemical purity with specific radioactivities of 26.4 ± 9.4 GBq/µmol within 41.2 ± 3.4 min from the end of bombardment (n = 14). 5g and 5h are now being evaluated as candidate radioligands for myocardial ,1 -ARs. Copyright © 2005 John Wiley & Sons, Ltd. [source] Role of proton MR for the study of muscle lipid metabolism,NMR IN BIOMEDICINE, Issue 7 2006Chris Boesch Abstract 1H-MR spectroscopy (MRS) of intramyocellular lipids (IMCL) became particularly important when it was recognized that IMCL levels are related to insulin sensitivity. While this relation is rather complex and depends on the training status of the subjects, various other influences such as exercise and diet also influence IMCL concentrations. This may open insight into many metabolic interactions; however, it also requires careful planning of studies in order to control all these confounding influences. This review summarizes various historical, methodological, and practical aspects of 1H-MR spectroscopy (MRS) of muscular lipids. That includes a differentiation of bulk magnetic susceptibility effects and residual dipolar coupling that can both be observed in MRS of skeletal muscle, yet affecting different metabolites in a specific way. Fitting of the intra- (IMCL) and extramyocellular (EMCL) signals with complex line shapes and the transformation into absolute concentrations is discussed. Since the determination of IMCL in muscle groups with oblique fiber orientation or in obese subjects is still difficult, potential improvement with high-resolution spectroscopic imaging or at higher field strength is considered. Fat selective imaging is presented as a possible alternative to MRS and the potential of multinuclear MRS is discussed. 1H-MRS of muscle lipids allows non-invasive and repeated studies of muscle metabolism that lead to highly relevant findings in clinics and patho-physiology. Copyright © 2006 John Wiley & Sons, Ltd. [source] Pancreatic fate of a 125I-labelled mouse monoclonal antibody directed against pancreatic B-cell surface ganglioside(s) in control and diabetic ratsCELL BIOCHEMISTRY AND FUNCTION, Issue 2 2001Laurence Ladri Abstract The possible use of a mouse monoclonal antibody directed against rat pancreatic B-cell surface ganglioside(s) and labelled with radioactive iodine for selective imaging of the endocrine pancreas by a non-invasive procedure was investigated by following its pancreatic fate in experiments conducted either in vitro by incubation of rat isolated pancreatic islets, acinar tissue and pancreatic pieces or in vivo after intravenous injection of the 125I-labelled antibodies ([125I],-G). Although the binding of [125I],-G per µg protein was about one order of magnitude higher in isolated islets than in acinar tissue, no significant difference was detected when comparing pancreatic pieces or isolated islets from control animals and rats rendered diabetic by one or two prior administrations of streptozotocin (STZ rats). Likewise, except in one set of experiments, no significant difference was found between control animals and STZ rats, when measuring the radioactive content of the pancreatic gland, relative to that of plasma, 1,4 days after the intravenous injection of [125I],-G. These findings indicate that under the present experimental conditions, the mouse monoclonal antibody labelled with radioactive iodine does not appear to be a promising tool for selective imaging of the endocrine pancreas, e.g. by single photon emission computerized tomography. Copyright © 2001 John Wiley & Sons, Ltd. [source] |