Home About us Contact | |||
Selective Forces (selective + force)
Kinds of Selective Forces Selected AbstractsForage collection, substrate preparation, and diet composition in fungus-growing antsECOLOGICAL ENTOMOLOGY, Issue 3 2010HENRIK H. DE FINE LICHT 1. Variation and control of nutritional input is an important selective force in the evolution of mutualistic interactions and may significantly affect coevolutionary modifications in partner species. 2. The attine fungus-growing ants are a tribe of more than 230 described species (12 genera) that use a variety of different substrates to manure the symbiotic fungus they cultivate inside the nest. Common ,wisdom' is that the conspicuous leaf-cutting ants primarily use freshly cut plant material, whereas most of the other attine species use dry and partly degraded plant material such as leaf litter and caterpillar frass, but systematic comparative studies of actual resource acquisition across the attine ants have not been done. 3. Here we review 179 literature records of diet composition across the extant genera of fungus-growing ants. The records confirm the dependence of leaf-cutting ants on fresh vegetation but find that flowers, dry plant debris, seeds (husks), and insect frass are used by all genera, whereas other substrates such as nectar and insect carcasses are only used by some. 4. Diet composition was significantly correlated with ant substrate preparation behaviours before adding forage to the fungus garden, indicating that diet composition and farming practices have co-evolved. Neither diet nor preparation behaviours changed when a clade within the paleoattine genus Apterostigma shifted from rearing leucocoprinous fungi to cultivating pterulaceous fungi, but the evolutionary derived transition to yeast growing in the Cyphomyrmex rimosus group, which relies almost exclusively on nectar and insect frass, was associated with specific changes in diet composition. 5. The co-evolutionary transitions in diet composition across the genera of attine ants indicate that fungus-farming insect societies have the possibility to obtain more optimal fungal crops via artificial selection, analogous to documented practice in human subsistence farming. [source] Running to stand still: adaptation and the response of plants to rapid climate changeECOLOGY LETTERS, Issue 9 2005Alistair S. Jump Abstract Climate is a potent selective force in natural populations, yet the importance of adaptation in the response of plant species to past climate change has been questioned. As many species are unlikely to migrate fast enough to track the rapidly changing climate of the future, adaptation must play an increasingly important role in their response. In this paper we review recent work that has documented climate-related genetic diversity within populations or on the microgeographical scale. We then describe studies that have looked at the potential evolutionary responses of plant populations to future climate change. We argue that in fragmented landscapes, rapid climate change has the potential to overwhelm the capacity for adaptation in many plant populations and dramatically alter their genetic composition. The consequences are likely to include unpredictable changes in the presence and abundance of species within communities and a reduction in their ability to resist and recover from further environmental perturbations, such as pest and disease outbreaks and extreme climatic events. Overall, a range-wide increase in extinction risk is likely to result. We call for further research into understanding the causes and consequences of the maintenance and loss of climate-related genetic diversity within populations. [source] Chromosomal Polymorphism in Korean Natural Populations of Drosophila immigransENTOMOLOGICAL RESEARCH, Issue 1 2003Nam Woo KIM ABSTRACT To analyze chromosome inversions of Drosophila immigrans, wild flies were captured from large vineyards located in the suburbs of Yecheon and Gyeongsan from October 1999 to 2001. With the egg samples obtained singly at each of the 799 females of D. immigrans, cytological examinations were carried out for the type and frequency of inversions. Two types of different inversions were found only in the second chromosome. The inversions detected were known to be the cosmopolitan inversion "A" and "B". The mean frequency of inversion A was estimated to be 0.074 in Yecheon and 0.066 in Gyeongsan and that of B was to be 0.026 in Yecheon and 0.021 in Gyeongsan, respectively. In the frequency ratio, inversion A was significantly higher than that of B. The present populations of D. immigrans showed subtle differences from other Korean populations in inversion frequencies. To account for the local variations observed in inversion frequencies, several hypotheses are discussed such as founding event or selective force. [source] DOES LARGE BODY SIZE IN MALES EVOLVE TO FACILITATE FORCIBLE INSEMINATION?EVOLUTION, Issue 11 2005A STUDY ON GARTER SNAKES Abstract A trend for larger males to obtain a disproportionately high number of matings, as occurs in many animal populations, typically is attributed either to female choice or success in male-male rivalry; an alternative mechanism, that larger males are better able to coercively inseminate females, has received much less attention. For example, previous studies on garter snakes (Thamnophis sirtalis parietalis) at communal dens in Manitoba have shown that the mating benefit to larger body size in males is due to size-dependent advantages in male-male rivalry. However, this previous work ignored the possibility that larger males may obtain more matings because of male-female interactions. In staged trials within outdoor arenas, larger body size enhanced male mating success regardless of whether a rival male was present. The mechanism involved was coercion rather than female choice, because mating occurred most often (and soonest) in females that were least able to resist courtship-induced hypoxic stress. Males do physically displace rivals from optimal positions in the mating ball, and larger males are better able to resist such displacement. Nonetheless, larger body size enhances male mating success even in the absence of such malemale interactions. Thus, even in mating systems where males compete physically and where larger body size confers a significant advantage in male-male competition, the actual selective force for larger body size in males may relate to forcible insemination of unreceptive females. Experimental studies are needed to determine whether the same situation occurs in other organisms in which body-size advantages have been attributed to male-male rather than male-female interactions. [source] HIGHER DISEASE PREVALENCE CAN INDUCE GREATER SOCIALITY: A GAME THEORETIC COEVOLUTIONARY MODELEVOLUTION, Issue 9 2005Matthew H. Bonds Abstract There is growing evidence that communicable diseases constitute a strong selective force on the evolution of social systems. It has been suggested that infectious diseases may determine upper limits of host sociality by, for example, inducing territoriality or early juvenile dispersal. Here we use game theory to model the evolution of host sociality in the context of communicable diseases. Our model is then augmented with the evolution of virulence to determine coevolutionarily stable strategies of host sociality and pathogen virulence. In contrast to a controversial hypothesis by Ewald (1994), our analysis indicates that pathogens may become more virulent when contact rates are low, and their prevalence can ultimately induce greater sociality. [source] ALLEE EFFECT AND SELF-FERTILIZATION IN HERMAPHRODITES: REPRODUCTIVE ASSURANCE IN DEMOGRAPHICALLY STABLE POPULATIONSEVOLUTION, Issue 12 2004Pierre-Olivier Cheptou Abstract The fact that selfing increases seed set (reproductive assurance) has often been put forward as an important selective force for the evolution of selfing. However, the role of reproductive assurance in hermaphroditic populations is far from being clear because of a lack of theoretical work. Here, I propose a theoretical model that analyzes selffertilization in the presence of reproductive assurance. Because reproductive assurance directly influences the per capita growth rate, I developed an explicit demographic model for partial selfers in the presence of reproductive assurance, specifically when outcrossing is limited by the possibility of pollen transfer (Allee effect). Mating system parameters are derived as a function of the underlying demographical parameters. The functional link between population demography and mating system parameters (reproductive assurance, selfing rate) can be characterized. The demographic model permits the analysis of the evolution of self-fertilization in stable populations when reproductive assurance occurs. The model reveals some counterintuitive results such as the fact that increasing the fraction of selfed ovules can, in certain circumstances, increase the fraction of outcrossed ovules. Moreover, I demonstrate that reproductive assurance per se cannot account for the evolution of stable mixed selfing rates. Also, the model reveals that the extinction of outcrossing populations depends on small changes in population density (ecological perturbations), while the transition from outcrossing to selfing can, in certain cases, lead the population to extinction (evolutionary suicide). More generally, this paper highlights the fact that self-fertilization affects both the dynamics of individuals and the dynamics of selfing genes in hermaphroditic populations. [source] PERSPECTIVE: EMBEDDED MOLECULAR SWITCHES, ANTICANCER SELECTION, AND EFFECTS ON ONTOGENETIC RATES: A HYPOTHESIS OF DEVELOPMENTAL CONSTRAINT ON MORPHOGENESIS AND EVOLUTIONEVOLUTION, Issue 5 2003Kathryn D. Kavanagh Abstract The switch between the cell cycle and the progress of differentiation in developmental pathways is prevalent throughout the eukaryotes in all major cell lineages. Disruptions to the molecular signals regulating the switch between proliferative and differentiating states are severe, often resulting in cancer formation (uncontrolled proliferation) or major developmental disorders. Uncontrolled proliferation and developmental disorders are potentially lethal defects in the developing animal. Therefore, natural selection would likely favor a tightly controlled regulatory mechanism to help prevent these fundamental defects. Although selection is usually thought of as a consequence of environmental or ecological influences, in this case the selective force to maintain this molecular switch is internal, manifested as a potentially lethal developmental defect. The morphogenetic consequences of this prevalent, deeply embedded, and tightly controlled mechanistic switch are currently unexplored, however experimental and correlative evidence from several sources suggest that there are important consequences on the control of growth rates and developmental rates in organs and in the whole animal. These observations lead one to consider the possibility of a developmental constraint on ontogenetic rates and morphological evolution maintained by natural selection against cancer and other embryonic lethal defects. [source] BEHAVIORAL ADAPTATIONS INCREASE THE VALUE OF ENEMY-FREE SPACE FOR HELIOTHIS SUBFLEXA, A SPECIALIST HERBIVOREEVOLUTION, Issue 4 2002Sara J. Oppenheim Abstract We investigated the importance of specialized behaviors in the use of enemy-free space by comparing the host-use behavior of two closely related moths, Heliothis subflexa Guenee and H. virescens Fabricius. Heliothis subflexa is a specialist on plants in the genus Physalis, whereas H. virescens is an extreme generalist, feeding on plants in at least 14 families. Heliothis subflexa uses the inflated calyx surrounding Physalis fruits as enemy-free space, and field rates of parasitism for H. subflexa on Physalis are much lower than for H. virescens on tobacco and cotton, common hosts found in the same habitat as Physalis. If Physalis' architecture were solely responsible for H. subflexa's low rates of parasitism on Physalis, we predicted thatH. virescens larvae experimentally induced to feed on Physalis would experience parasitism rates similar to those ofH. subflexa. We found, however, that specialized host-use and host-acceptance behaviors are integral to the use of enemy-free space on Physalis and strongly augment the effects of the structural refuge. In laboratory assays, we found considerable differences between the larval behavior of the specialist, H. subflexa, and the generalist, H. virescens, and these contributed to H. subflexa's superior use of enemy-free space on Physalis. We tested the importance of these behavioral differences in the field by comparing parasitism of H. virescens on Physalis, H. virescens on tobacco, and H. subflexa on Physalis by Cardiochiles nigriceps Vierick, a specialist braconid parasitoid. For H. virescens, a threefold decrease in parasitism occurred when feeding on Physalis (mean parasitism ± SEM = 13 ± 4%) rather than tobacco (43 ± 4%), a difference we attribute to the structural refuge provided by Physalis. However, parasitism ofH. virescens on Physalis was more than ten times as great as that of H. subflexa on Physalis (1 ± 4%), supporting the hypothesis that specialized behaviors have a substantial impact on use of Physalis as enemy-free space. Behavioral adaptations may be central to the use of enemy-free space by phytophagous insects and may act as an important selective force in the evolution of dietary specialization. [source] Habitat structure mediates predation risk for sedentary prey: experimental tests of alternative hypothesesJOURNAL OF ANIMAL ECOLOGY, Issue 3 2009Anna D. Chalfoun Summary 1Predation is an important and ubiquitous selective force that can shape habitat preferences of prey species, but tests of alternative mechanistic hypotheses of habitat influences on predation risk are lacking. 2We studied predation risk at nest sites of a passerine bird and tested two hypotheses based on theories of predator foraging behaviour. The total-foliage hypothesis predicts that predation will decline in areas of greater overall vegetation density by impeding cues for detection by predators. The potential-prey-site hypothesis predicts that predation decreases where predators must search more unoccupied potential nest sites. 3Both observational data and results from a habitat manipulation provided clear support for the potential-prey-site hypothesis and rejection of the total-foliage hypothesis. Birds chose nest patches containing both greater total foliage and potential nest site density (which were correlated in their abundance) than at random sites, yet only potential nest site density significantly influenced nest predation risk. 4Our results therefore provided a clear and rare example of adaptive nest site selection that would have been missed had structural complexity or total vegetation density been considered alone. 5Our results also demonstrated that interactions between predator foraging success and habitat structure can be more complex than simple impedance or occlusion by vegetation. [source] Comparative anatomy and phylogenetic distribution of the mammalian cecal appendixJOURNAL OF EVOLUTIONARY BIOLOGY, Issue 10 2009H. F. SMITH Abstract A recently improved understanding of gut immunity has merged with current thinking in biological and medical science, pointing to an apparent function of the mammalian cecal appendix as a safe-house for symbiotic gut microbes, preserving the flora during times of gastrointestinal infection in societies without modern medicine. This function is potentially a selective force for the evolution and maintenance of the appendix, and provides an impetus for reassessment of the evolution of the appendix. A comparative anatomical approach reveals three apparent morphotypes of the cecal appendix, as well as appendix-like structures in some species that lack a true cecal appendix. Cladistic analyses indicate that the appendix has evolved independently at least twice (at least once in diprotodont marsupials and at least once in Euarchontoglires), shows a highly significant (P < 0.0001) phylogenetic signal in its distribution, and has been maintained in mammalian evolution for 80 million years or longer. [source] Fatal liver failure with the emergence of hepatitis B surface antigen variants with multiple stop mutations after discontinuation of lamivudine therapyJOURNAL OF MEDICAL VIROLOGY, Issue 3 2006Ji-Ming Zhang Abstract Treatment of chronic hepatitis B virus (HBV) infection with lamivudine is effective and well-tolerated. However, discontinuation of the treatment is associated frequently with acute exacerbation of liver diseases. A patient suffering from acute liver failure after discontinuation of lamivudine treatment is described. The patient was treated with lamivudine for 4 months and ceased the treatment without consulting. After receiving lamivudine, the patient developed anti-HBs and became negative for hepatitis B surface antigens (HBsAg). However, HBV DNA reappeared to a level of 6.47,×,105 copies/ml. The patient died due to acute liver failure. Sequencing of HBV isolates revealed that mutations including G145R and stop codons occurred within the HBsAg coding region. In conclusion, HBV replication resumed after the uncontrolled cessation of lamivudine treatment in this patient and may have triggered the process leading to liver failure. Anti-HBs antibody appeared and may be the selective force for the emergence of HBV mutants. J. Med. Virol. 78:324,328, 2006. © 2006 Wiley-Liss, Inc. [source] Adult mortality rates in young colonies of a swarm-founding social wasp (Polybia occidentalis)JOURNAL OF ZOOLOGY, Issue 1 2003Andrew M. Bouwma The swarm founders are unusual among the social wasps in having socialized the dispersal stage of the life cycle. Colonies are initiated by groups of workers accompanied by smaller numbers of queens. Thus, swarm founders avoid the colony size bottleneck faced by the independent founders, whose colonies start with one or a few queens. Among the advantages of swarm founding is a reduction of the risk of colony failure due to attrition of the founding adults. Stochasticity in adult mortality is less likely to lead to outright extinction of a large founding group before new workers are produced (pre-emergence period). However, it is not known how important pre-emergence mortality is as a selective force on founding and dispersal behaviour in swarm founders, since colony-wide mortality rates have never been reported for a large-colony social wasp. Sixty-eight swarms of Polybia occidentalis were censused just before colony initiation and again 24 days later. Mortality over this period averaged 0.41±0.12 of the founding swarm population. Including mortality on the day of emigration and extrapolating to day 30, when the first adult offspring eclose, the original absconding swarm would be reduced by 0.52 of its initial size. Rates of loss during the first week, while the colonies engaged in nest construction, did not differ from rates over the full 24 days. Thus, colony founding in P. occidentalis is both costly and highly variable in terms of mortality of the founding adults. [source] Worms and malaria: noisy nuisances and silent benefitsPARASITE IMMUNOLOGY, Issue 7 2002Mathieu Nacher Summary The burden of malaria mortality has been a major evolutionary influence on human immunity. The selection of the most successful immune responses against malaria has been in populations concomitantly infected by intestinal helminths. Animal models have shown that coinfections with helminths and protozoa in the same host elicit a range of antagonist and synergistic interactions. Recent findings suggest similar interactions take place between helminths, Plasmodium falciparum and humans. However, as the threat of HIV and tuberculosis becomes a major selective force, what used to be a successful ecological system may now prove detrimental. Nevertheless, the understanding of the ecological forces at play may expose new intervention targets for malaria control, and give a new perspective on our shortcomings against the deadliest of human parasites. [source] Ecological and evolutionary trends in wetlands: Evidence from seeds and seed banks in New South Wales, Australia and New Jersey, USAPLANT SPECIES BIOLOGY, Issue 2 2000Mary A. Leck Abstract Aquatic plants include a variety of life forms and functional groups that are adapted to diverse wetland habitats. Both similarities and differences in seed and seed-bank characteristics were discovered in comparisons of Australian (New South Wales) temporary upland wetlands with a North American (New Jersey) tidal freshwater marsh having both natural and constructed wetlands. In the former, flooding and drying are unpredictable and in the latter water levels vary diurnally and substrate is constantly moist. The hydrologic regimen provides the overriding selective force, with climate an important second factor. Other factors related to water level, such as oxygen availability, temperature and light, vary spatially and temporally, influencing germination processes, germination rates and seedling establishment. Seed and seed-bank characteristics (size, desiccation and inundation tolerance, germination cues and seed-bank longevity and depletion) differ, with the Australian temporary wetland being more similar to the small-seeded persistent seed bank of the constructed wetland site than to the natural tidal freshwater site with its larger seeds, transient seed bank and seasonal spring germination. Some non-spring germination can occur in the tidal constructed wetland if the soil is disturbed. In contrast, seeds in the temporary Australian wetlands germinated in response to wet/dry cycles rather than to season. Functional groups (e.g. submerged, amphibious) are more diverse in the Australian temporary wetlands, where all species tolerate drying. We suggest that the amphibious zone, with its hydrologic gradient, is the site of selection pressure determining establishment of wetland plants from seed. In this zone, multiple selective factors vary spatially and temporally. [source] Brief communication: Plio-Pleistocene eagle predation on fossil cercopithecids from the Humpata Plateau, southern AngolaAMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY, Issue 3 2009Christopher C. Gilbert Abstract Recent studies suggest a large raptor such as the crowned eagle (Stephanaoetus coronatus) was responsible for collecting at least a portion of the primate fauna from the South African fossil site of Taung, including its lone hominin specimen. This taphonomic signature at Taung is currently regarded as a unique and, most likely, isolated case in primate and human evolution. However, the activities of large, carnivorous birds should also be detectable at other primate fossil localities in Africa if raptors have been a strong selective force throughout primate evolution. Over the last 60 years, a collection of extinct cercopithecids has been assembled from several cave breccias on the Humpata Plateau in southern Angola. The material, dated near the Plio-Pleistocene boundary, includes an assortment of craniodental and postcranial remains variably assigned to Papio (Dinopithecus) cf. quadratirostris, Parapapio, Cercopithecoides, and Theropithecus. We compare the Angolan and Taung material to remains of extant primates killed by crowned eagles in the Ivory Coast's Tai National Park. Our analysis indicates that the size distribution and composition of fauna from the localities is quite similar and that there are striking consistencies in damage to the crania from each site. The absence of large bodied (>20 kg) primates and other mammalian taxa at the Taung hominin locality and Tai, and their rarity in Angola, combined with the strong likelihood that raptor nests were positioned near fissure openings at both fossil localities, provides additional support for eagle involvement. On the basis of this evidence, we conclude that at least some of the Angolan cercopithecids were most likely raptor prey and hypothesize that raptor predation has been a strong and perhaps underappreciated selective force during the course of primate evolution. Am J Phys Anthropol 2009. © 2009 Wiley-Liss, Inc. [source] Does It Make Sense to Restore Wildland Fire in Changing Climate?RESTORATION ECOLOGY, Issue 4 2008Peter Z. Fulé Abstract Forest restoration guided by historical reference conditions of fire regime, forest structure, and composition has been increasingly and successfully applied in fire-adapted forests of western North America. But because climate change is expected to alter vegetation distributions and foster severe disturbances, does it make sense to restore the ecological role of wildland fire through management burning and related activities such as tree thinning? I suggest that some site- and date-specific historical conditions may be less relevant, but reference conditions in the broad sense are still useful. Reference conditions encompass not only the recent past but also evolutionary history, reflecting the role of fire as a selective force over millennia. Taking a long-term functional view of historical reference conditions as the result of evolutionary processes can provide insights into past forest adaptations and migrations under various climates. As future climates change, historical reference data from lower, southerly, and drier sites may be useful in places that are higher, northerly, and currently wetter. Almost all models suggest that the future will have substantial increases in wildfire occurrence, but prior to recent human-caused fire exclusion, fire-adapted pine forests of western North America were among the most frequently burned in the world. Restoration of patterns of burning and fuels/forest structure that reasonably emulate historical conditions prior to fire exclusion is consistent with reducing the susceptibility of these ecosystems to catastrophic loss. Priorities may include fire and thinning treatments of upper elevation ecotones to facilitate forest migration, whereas vulnerable low-elevation forests may merit less management investment. [source] Relationship between floral tube length and nectar robbing in Duranta erecta L. (Verbenaceae)BIOLOGICAL JOURNAL OF THE LINNEAN SOCIETY, Issue 2 2009LUIS NAVARRO Although nectar robbing is a common phenomenon in plant species with tubular flowers or flowers with nectar spurs, the potential effect of this illegitimate interaction on plant reproductive success has not received the deserved attention. In the present study, we analysed the functional relationship between flower morphology and nectar robbing, and examined the reproductive consequences of the interaction in a population of Duranta erecta (Verbenaceae) on the island of Cuba. The results show that nectar robbing is conducted by the carpenter bees Xylocopa cubaecola and affects up to 44% of flowers in the studied population. However, not all the flowers have the same probability of being robbed. The chance of flowers being robbed increases with flower length and flower diameter. Moreover, nectar robbing significantly decreases the chance that flowers will set fruit. Also, the impact of nectar robbing on the probability of flowers to set fruits is dependent on the plant. We suggest that nectar robbing may represent an opposite selective force that balances the selection for longer corollas often imposed by pollinators specializing in visiting tubular flowers. Such a relationship with nectar robbers would have obvious implications for the evolution of tubular or closed flowers. This preliminary finding deserves further research in light of the ecological and evolutionary consequences of nectar robbing in tubular flowers. © 2009 The Linnean Society of London, Biological Journal of the Linnean Society, 2009, 96, 392,398. [source] Parasite loads are higher in the tropics: temperate to tropical variation in a single host-parasite systemECOGRAPHY, Issue 4 2008Daniel J. Salkeld Parasites are important selective forces upon the evolutionary ecology of their hosts. At least one hypothesis suggests that high species diversity in the tropics is associated with higher parasite abundance in tropical climates. Few studies, however, have directly assessed whether parasite abundance is higher in the tropics. To address this question, it is ideal, although seldom achievable, to compare parasite abundance in a single species that occurs over a geographical area including both temperate and tropical regions. We examined variation in blood parasite abundance in seven populations of a single lizard host species (Eulamprus quoyii) using a transect that spans temperate and tropical climates. Parasite prevalence (proportion of the host population infected) showed no geographical pattern. Interestingly though, parasite load was higher in lizard populations in the tropics, and was related to mean annual temperature, but not to rainfall. We speculate that in this system the relationship between latitude and parasite load is most likely due to variation in host life history over their geographic range. [source] DENSITY DEPENDENCE AND COOPERATION: THEORY AND A TEST WITH BACTERIAEVOLUTION, Issue 9 2009Adin Ross-Gillespie Although cooperative systems can persist in nature despite the potential for exploitation by noncooperators, it is often observed that small changes in population demography can tip the balance of selective forces for or against cooperation. Here we consider the role of population density in the context of microbial cooperation. First, we account for conflicting results from recent studies by demonstrating theoretically that: (1) for public goods cooperation, higher densities are relatively unfavorable for cooperation; (2) in contrast, for self-restraint,type cooperation, higher densities can be either favorable or unfavorable for cooperation, depending on the details of the system. We then test our predictions concerning public goods cooperation using strains of the pathogenic bacterium Pseudomonas aeruginosa that produce variable levels of a public good,iron-scavenging siderophore molecules. As predicted, we found that the relative fitness of cheats (under-producers) was greatest at higher population densities. Furthermore, as assumed by theory, we show that this occurs because cheats are better able to exploit the cooperative siderophore production of other cells when they are physically closer to them. [source] SEXUAL ANTAGONISM AND THE EVOLUTION OF X CHROMOSOME INACTIVATIONEVOLUTION, Issue 8 2008Jan Engelstädter In most female mammals, one of the two X chromosomes is inactivated early in embryogenesis. Expression of most genes on this chromosome is shut down, and the inactive state is maintained throughout life in all somatic cells. It is generally believed that X-inactivation evolved as a means of achieving equal gene expression in males and females (dosage compensation). Following degeneration of genes on the Y chromosome, gene expression on X chromosomes in males and females is upregulated. This results in closer to optimal gene expression in males, but deleterious overexpression in females. In response, selection is proposed to favor inactivation of one of the X chromosomes in females, restoring optimal gene expression. Here, we make a first attempt at shedding light on this intricate process from a population genetic perspective, elucidating the sexually antagonistic selective forces involved. We derive conditions for the process to work and analyze evolutionary stability of the system. The implications of our results are discussed in the light of empirical findings and a recently proposed alternative hypothesis for the evolution of X-inactivation. [source] DOES VIVIPARITY EVOLVE IN COLD CLIMATE REPTILES BECAUSE PREGNANT FEMALES MAINTAIN STABLE (NOT HIGH) BODY TEMPERATURES?EVOLUTION, Issue 8 2004Richard Shine Abstract Viviparity (live bearing) has evolved from egg laying (oviparity) in many lineages of lizards and snakes, apparently in response to occupancy of cold climates. Explanations for this pattern have focused on the idea that behaviorally thermoregulating (sun-basking) pregnant female reptiles can maintain higher incubation temperatures for their embryos than would be available in nests under the soil surface. This is certainly true at very high elevations, where only viviparous species occur. However, comparisons of nest and lizard temperatures at sites close to the upper elevational limit for oviparous reptiles (presumably, the selective environment where the transition from oviparity to viviparity actually occurs) suggest that reproductive mode has less effect on mean incubation temperatures than on the diel distribution of those temperatures. Nests of the oviparous scincid lizard Bassiana duperreyi showed smooth diel cycles of heating and cooling. In contrast, body temperatures of the viviparous scincid Eulamprus heatwolei rose abruptly in the morning, were high and stable during daylight hours, and fell abruptly at night. Laboratory incubation experiments mimicking these patterns showed that developmental rates of eggs and phenotypic traits of hatchling B. duperreyi were sensitive to this type of thermal variance as well as to mean temperature. Hence, diel distributions as well as mean incubation temperatures may have played an important role in the selective forces for viviparity. More generally, variances as well as mean values of abiotic factors may constitute significant selective forces on life-history evolution. [source] ECOLOGICAL BISTABILITY AND EVOLUTIONARY REVERSALS UNDER ASYMMETRICAL COMPETITIONEVOLUTION, Issue 6 2002Fabio Dercole Abstract How does the process of life-history evolution interplay with population dynamics? Almost all models that have addressed this question assume that any combination of phenotypic traits uniquely determine the ecological population state. Here we show that if multiple ecological equilibria can exist, the evolution of a trait that relates to competitive performance can undergo adaptive reversals that drive cyclic alternation between population equilibria. The occurrence of evolutionary reversals requires neither environmentally driven changes in selective forces nor the coevolution of interactions with other species. The mechanism inducing evolutionary reversals is twofold. First, there exist phenotypes near which mutants can invade and yet fail to become fixed; although these mutants are eventually eliminated, their transitory growth causes the resident population to switch to an alternative ecological equilibrium. Second, asymmetrical competition causes the direction of selection to revert between high and low density. When ecological conditions for evolutionary reversals are not satisfied, the population evolves toward a steady state of either low or high abundance, depending on the degree of competitive asymmetry and environmental parameters. A sharp evolutionary transition between evolutionary stasis and evolutionary reversals and cycling can occur in response to a smooth change in ecological parameters, and this may have implications for our understanding of size-abundance patterns. [source] Emigration patterns among trout, Salmo trutta (L.), kelts and smolts through spillways in a hydroelectric damFISHERIES MANAGEMENT & ECOLOGY, Issue 5-6 2008M. KRAABØL Abstract, The emigration patterns among radio-tagged trout, Salmo trutta L., kelts (n = 41, total length: 60,90 cm) and smolts [n = 27, total body length (BL): 22,30 cm] in the regulated River Gudbrandsdalslågen, south-east Norway, were studied by investigating the influence of sex (kelts) and BL (kelts and smolts) on the timing of emigration. In total, 49% of the kelts emigrated towards the hydroelectric dam shortly after spawning, whilst 51% over-wintered. Female kelts were five times more likely to initiate autumn emigration, and eight times more likely to descend the spillways during the first release of surface water than males. Large individuals of both sexes descended earlier than smaller individuals. Larger smolts were more likely to descend during the first release of surface water than smaller smolts. To safeguard the emigration of iteroparous trout kelts and smolts, the spillways should release surface water both in autumn and spring to avoid selective forces during emigration through spillways. [source] Relationship between post-fire regeneration and leaf economics spectrum in Mediterranean woody speciesFUNCTIONAL ECOLOGY, Issue 1 2009S. Saura-Mas Summary 1Recent work has identified global-scale relationships between key leaf traits (leaf economics spectrum). However, it is important to determine whether this approach can be applied at local scale with smaller subsets of species facing similar environments. Since fire is a key process in Mediterranean shrubland dynamics we analyze whether fire-related life-history traits influence the pattern of correlation between the leaf economic spectrum and leaf moisture traits. 2Using structural equation modelling and exploratory path analysis, we developed alternative models to test how interspecific leaf traits are related to the seasonal variation of water content (leaves and shoots) and to the type of post-fire regeneration of Mediterranean woody species. 3This study demonstrates that for these species seasonal variation in water content and fuel moisture would be better predicted by the presence or absence of a trait describing post-fire seedling establishment than by the leaf economic spectrum traits. However, leaf dry matter content (LDMC) is influenced by both the leaf economic spectrum and the post-fire regenerative type. 4Seeder species (those that recruit via seeds immediately after fire) present lower LDMC and higher relative seasonal variation of relative water content (RWCrsv) than non-seeders. We hypothesize that since seeder species mostly evolved under the Mediterranean climate, they developed a particular strategy of drought tolerance (without causing an effect to the relation between the volume occupied by cytoplasm relative to the volume occupied by cell walls), which is the cause of the observed relation between LDMC and RWCrsv. 5This study suggests that the leaves of Mediterranean woody species would follow the general leaf economics spectrum (Wright et al. 2004) but that specific selective forces, such as disturbance regime, acting at regional scale also play a relevant role to explain leaf traits related to water content. [source] Reproductive modes in lizards: measuring fitness consequences of the duration of uterine retention of eggsFUNCTIONAL ECOLOGY, Issue 2 2008R. S. Radder Summary 1One of the primary axes of life-history variation involves the proportion of embryonic development for which the offspring is retained within its parent's body; understanding trade-offs associated with prolonging that period thus is a critical challenge for evolutionary ecology. 2Prior to oviposition, most oviparous squamate reptiles retain developing eggs in utero for about one-third of embryogenesis; the strong conservatism in this trait is a major puzzle in reptilian reproduction. To clarify fitness consequences of this prolonged uterine retention, we need to experimentally modify the trait and examine the effects of our manipulation. 3We used transdermal application of corticosterone to induce gravid scincid lizards (Bassiana duperreyi) to lay their eggs ,prematurely', with relatively undeveloped embryos. Corticosterone application induced females to oviposit sooner (mean of 5·41 ± 0·51 days post-treatment) at earlier embryonic developmental stage (27 ± 0·21) than did controls (13·2 ± 1·22 days; embryonic stage 30·4 ± 0·16). 4Corticosterone levels in the egg yolk were unaffected by maternal treatment, so effects of earlier oviposition should not be confounded by endocrine disruption of embryogenesis. Nonetheless, early oviposition reduced hatchling fitness. Hatching success was lower, incubation periods post-laying were increased, and neonates from eggs laid at earlier embryonic stages were smaller and slower. 5These results suggest that retention of developing eggs in utero by oviparous squamates enhances maternal fitness, and does so via modifications to offspring phenotypes rather than (for example) due to accelerated developmental rates of eggs in utero compared to in the nest. 6More generally, our data support optimality models that interpret interspecific variation in the duration of maternal,offspring contact in terms of the selective forces that result from earlier vs. later termination of that maternal investment. [source] Genetic and catalytic efficiency structure of an HCV protease quasispecies,HEPATOLOGY, Issue 4 2007Sandra Franco The HCV nonstructural protein (NS)3/4A serine protease is not only involved in viral polyprotein processing but also efficiently blocks the retinoic-acid,inducible gen I and Toll-like receptor 3 signaling pathways and contributes to virus persistence by enabling HCV to escape the interferon antiviral response. Therefore, the NS3/4A protease has emerged as an ideal target for the control of the disease and the development of new anti-HCV agents. Here, we analyzed, at a high resolution (approximately 100 individual clones), the HCV NS3 protease gene quasispecies from three infected individuals. Nucleotide heterogeneity of 49%, 84%, and 91% were identified, respectively, which created a dense net that linked different parts of the viral population. Minority variants having mutations involved in the acquisition of resistance to current NS3/4A protease inhibitors (PIs) were also found. A vast diversity of different catalytic efficiencies could be distinguished. Importantly, 67% of the analyzed enzymes displayed a detectable protease activity. Moreover, 35% of the minority individual variants showed similar or better catalytic efficiency than the master (most abundant) enzyme. Nevertheless, and in contrast to minority variants, master enzymes always displayed a high catalytic efficiency when different viral polyprotein cleavage sites were tested. Finally, genetic and catalytic efficiency differences were observed when the 3 quasispecies were compared, suggesting that different selective forces were acting in different infected individuals. Conclusion: The rugged HCV protease quasispecies landscape should be able to react to environmental changes that may threaten its survival. (HEPATOLOGY 2007;45:899,910.) [source] Are House Wren Troglodytes aedon eggs unusually strong?IBIS, Issue 2 2002Test of the predicted effect of intraspecific egg destruction As a result of opposing selective forces, the external strength of avian eggs should be near some size-specific optimum. However, in certain situations there should be selection on females to lay unusually strong eggs. According to one hypothesis, intraspecific egg destruction should favour increased egg strength as a means of defence against conspecific intruders. This hypothesis predicts that House Wrens Troglodytes aedon, a species well known for its tendency to destroy conspecific clutches, should be under selection for unusually strong eggs. However, the intensity of selection for strong eggs should also be modified by efficacy of nest defence against conspecific intruders in a given species (i.e. efficient nest defence by the breeding pair should weaken selection for unusually strong eggs). The goals of our study were: (1) to establish whether House Wren eggs are stronger than expected for their size; (2) to determine which structural mechanisms are responsible for their unusual strength; and (3) to test a hypothesis that, between wren species, the efficacy of nest defence and the intensity of egg-destroying behaviour affect the intensity of selection for unusually strong eggs. Our results demonstrated that: (1) House Wren eggs are 1.9 times stronger than expected for their size; (2) their unusual strength is achieved mostly by their unusually thick shells; and (3) eggs of the House Wren (extensive paternal nest defence; male egg-destroying behaviour suppressed during incubation) are significantly weaker structurally than eggs of the Marsh Wren Cistothorus palustris (reduced paternal nest defence; male egg-destroying behaviour present throughout incubation). These results are consistent with the hypothesis that the intraspecific egg-destroying behaviour and the efficacy of nest defence by the breeding adults have played a role in the evolution of strength of House Wren eggs. [source] Mind Reading, Deception and the Evolution of Kantian Moral AgentsJOURNAL FOR THE THEORY OF SOCIAL BEHAVIOUR, Issue 2 2004ALEJANDRO ROSAS Classical evolutionary explanations of social behavior classify behaviors from their effects, not from their underlying mechanisms. Here lies a potential objection against the view that morality can be explained by such models, e.g. Trivers'reciprocal altruism. However, evolutionary theory reveals a growing interest in the evolution of psychological mechanisms and factors them in as selective forces. This opens up perspectives for evolutionary approaches to problems that have traditionally worried moral philosophers. Once the ability to mind-read is factored-in among the relevant variables in the evolution of moral abilities and counted among the selection pressures that have plausibly shaped our nature as moral agents, an evolutionary approach can contribute, so I will argue, to the solution of a long-standing debate in moral philosophy and psychology concerning the basic motivation for moral behavior. [source] Duration of primary moult affects primary quality in Grey Plovers Pluvialis squatarolaJOURNAL OF AVIAN BIOLOGY, Issue 4 2001Lorenzo Serra Feather wear is the natural degradation and breakage of feather structure during the interval between moults. Different rates of feather wear have been observed for primaries of free-living populations of several species of passerines and waders, and this variability has been linked to different concentrations of melanins. In this study primary moult duration explained 59% of the variation in annual rates of primary abrasion (percentage wing length loss) of seven Grey Plover wintering populations, while migration distance explained 14%. The analysis suggests that primary moult duration plays a key role in determining primary durability and hence primary quality. Long distance migrants might evolve more durable primaries, despite the higher predation risks and energetic costs of a prolonged moult. Partial or complete pre-breeding primary moults of first-year waders and complete biannual moults of some passerines might have evolved under selective forces favouring migration with unabraded primaries. [source] The fellowship of the hobbit: the fauna surrounding Homo floresiensisJOURNAL OF BIOGEOGRAPHY, Issue 6 2010Hanneke J. M. Meijer Abstract The Late Pleistocene Flores fauna shows a pattern observed on many other islands. It is neither aberrant nor exclusive, but the result of non-random selective forces acting upon an impoverished and disharmonic insular fauna. By comparing the Flores vertebrate fauna with other fossil insular biotas, it is apparent that the evolution of Homo floresiensis is part of a general pattern affecting all the inhabitants of Pleistocene Flores. Vertebrate evolution on Flores appears to have been characterized by phylogenetic continuity, low species richness and a disharmonic fauna. All three aspects stem from the isolated position of the island and have resulted in the distinct morphological characteristics of the Flores fauna. Evidence reviewed herein shows that features exhibited by H. floresiensis, such as small stature, a small brain, relatively long arms, robust lower limbs and long feet, are not unique, but are shared by other insular taxa. Therefore, the evolution of H. floresiensis can be explained by existing models of insular evolution and followed evolutionary pathways similar to those of the other terrestrial vertebrates inhabiting Pleistocene Flores. [source] |