Home About us Contact | |||
Self-assembling Peptide (self-assembling + peptide)
Selected AbstractsSelf-Assembling Peptide as a Potential Carrier for Hydrophobic Anticancer Drug Ellipticine: Complexation, Release and In Vitro DeliveryADVANCED FUNCTIONAL MATERIALS, Issue 1 2009Shan Yu Fung Abstract The self-assembling peptide EAK16-II is capable of stabilizing hydrophobic compounds to form microcrystal suspensions in aqueous solution. Here, the ability of this peptide to stabilize the hydrophobic anticancer agent ellipticine is investigated. The formation of peptide-ellipticine suspensions is monitored with time until equilibrium is reached. The equilibration time is found to be dependent on the peptide concentration. When the peptide concentration is close to its critical aggregation concentration, the equilibration time is minimal at 5,h. With different combinations of EAK16-II and ellipticine concentrations, two molecular states (protonated or cyrstalline) of ellipticine could be stabilized. These different states of ellipticine significantly affect the release kinetics of ellipticine from the peptide-ellipticine complex into the egg phosphatidylcholine vesicles, which are used to mimic cell membranes. The transfer rate of protonated ellipticine from the complex to the vesicles is much faster than that of crystalline ellipticine. This observation may also be related to the size of the resulting complexes as revealed from the scanning electron micrographs. In addition, the complexes with protonated ellipticine are found to have a better anticancer activity against two cancer cell lines, A549 and MCF-7. This work forms the basis for studies of the peptide-ellipticine suspensions in vitro and in vivo leading to future development of self-assembling peptide-based delivery of hydrophobic anticancer drugs. [source] Self-assembling peptides: Sequence, secondary structure in solution and film formationBIOPOLYMERS, Issue 11 2008Roberta Gambaretto Abstract Peptides of alternating charge and hydrophobic amino acids have a tendency to adopt unusually stable ,-sheet structures that can form insoluble macroscopic aggregates under physiological conditions. In this study, analogues of a well-known self-assembling peptide, characterized by the same polar/nonpolar periodicity but with different residues, were designed to study the relationship between sequence, conformation in solution and film-forming capacity in saline solution. Peptide conformation, evaluated by circular dichroism, correlated with film forming capacity observed by inverted optical microscopy after addition of saline solution and subsequent drying. We found that polar/nonpolar periodicity of several analogues is not criterion enough to induce ,-sheet and thus film formation and that conformations different from ,-sheet also allow self-assemblage. Furthermore, addition of the short adhesive sequence RGD to a known self-assembling sequence was shown to not prevent the self-assembling process. This finding might prove useful for the design of biomimetic scaffolds. © 2008 Wiley Periodicals, Inc. Biopolymers 89: 906,915, 2008. This article was originally published online as an accepted preprint. The "Published Online" date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com [source] Influence of a Self-Assembling Peptide, RADA16, Compared with Collagen I and Matrigel on the Malignant Phenotype of Human Breast-Cancer Cells in 3D Cultures and in vivoMACROMOLECULAR BIOSCIENCE, Issue 5 2009Kun Mi Abstract Cancer-cell phenotype is not only the result of malignant progression, but also dependent on the microenvironment surrounding them, including influences from the extracellular matrix and its structural properties. We have investigated the influence of the nanofiber matrix of the self-assembling peptide, RADA16, in comparison with collagen I and Matrigel on the malignant phenotype of the human breast-cancer cell, MDA-MB-231, in 3D cultures, including the morphology, survival, proliferation rate, migration potential and the effect of these matrices on the malignancy of the cancer cells in vivo. Our data indicate that these tumor cells change their morphology in response to the different 3D matrix in vitro cultures and the RADA16 self-assembling peptide scaffold mimics an extracellular matrix and could effectively reduce the malignant phenotype of the tumor cells in vitro and in vivo. [source] Self-assembling peptides: Sequence, secondary structure in solution and film formationBIOPOLYMERS, Issue 11 2008Roberta Gambaretto Abstract Peptides of alternating charge and hydrophobic amino acids have a tendency to adopt unusually stable ,-sheet structures that can form insoluble macroscopic aggregates under physiological conditions. In this study, analogues of a well-known self-assembling peptide, characterized by the same polar/nonpolar periodicity but with different residues, were designed to study the relationship between sequence, conformation in solution and film-forming capacity in saline solution. Peptide conformation, evaluated by circular dichroism, correlated with film forming capacity observed by inverted optical microscopy after addition of saline solution and subsequent drying. We found that polar/nonpolar periodicity of several analogues is not criterion enough to induce ,-sheet and thus film formation and that conformations different from ,-sheet also allow self-assemblage. Furthermore, addition of the short adhesive sequence RGD to a known self-assembling sequence was shown to not prevent the self-assembling process. This finding might prove useful for the design of biomimetic scaffolds. © 2008 Wiley Periodicals, Inc. Biopolymers 89: 906,915, 2008. This article was originally published online as an accepted preprint. The "Published Online" date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com [source] |