Availability Gradient (availability + gradient)

Distribution by Scientific Domains


Selected Abstracts


A comparison of invasive and non-invasive dayflowers (Commelinaceae) across experimental nutrient and water gradients

DIVERSITY AND DISTRIBUTIONS, Issue 5-6 2004
Jean H. Burns
ABSTRACT Little is known about the traits and mechanisms that determine whether or not a species will be invasive. Invasive species are those that establish and spread after being introduced to a novel habitat. A number of previous studies have attempted to correlate specific plant traits with invasiveness. However, many such studies may be flawed because they fail to account for shared evolutionary history or fail to measure performance directly. It is also clear that performance is context dependent. Thus, an approach that corrects for relatedness and incorporates multiple experimental conditions will provide additional information on performance traits of invasive species. I use this approach with two or three pairs of invasive and closely related non-invasive species of Commelinaceae grown over experimental gradients of nutrient and water availability. Invasive species have been introduced, established, and spread outside their native range; non-invasive species have been introduced, possibly (but not necessarily) established, but are not known to have spread outside their native range. The invasive species had higher relative growth rates (RGR) than non-invasive congeners at high nutrient availabilities, but did not differ from non-invasive species at low nutrient availabilities. This is consistent with a strategy where these particular invasive species are able to rapidly use available resources. Relative growth rates were also higher for two out of three invasive species across a water availability gradient, but RGR did not differ in plasticity between the invasive and non-invasive species. This suggests that nutrient addition, but not changes in water availability, might favour invasion of dayflowers. This approach is novel in comparing multiple pairs of invasive and non-invasive congeners across multiple experimental conditions and allows evaluation of the robustness of performance differences. It also controls for some of the effects of relatedness that might confound multispecies comparisons. [source]


Leaf-level resource use for evergreen and deciduous conifers along a resource availability gradient

FUNCTIONAL ECOLOGY, Issue 3 2000
B. D. Kloeppel
Abstract 1.,We compared leaf-level carbon, nitrogen and water use for a deciduous (Larix occidentalis Nutt.) and sympatric evergreen (Pseudotsuga menziesii, Beissn., Franco, or Pinus contorta Engelm.) conifer along a resource availability gradient spanning the natural range of L. occidentalis in western Montana, USA. 2.,We hypothesized that leaf photosynthesis (A), respiration (r), specific leaf area (SLA) and foliar nitrogen concentration (N) would be higher for deciduous than sympatric evergreen conifers in mixed stands, and that these interspecies differences would increase from high to low resource availability. We also hypothesized that leaf-level nitrogen and water-use efficiency would be higher for the co-occurring evergreen conifer than L. occidentalis. 3.,In general, mass-based photosynthesis (Am) was significantly higher for L. occidentalis than co-occurring evergreen conifers in the drier sites, but Am was similar for evergreen and deciduous conifers at the mesic site. 4.,Mass-based foliar nitrogen concentration (Nm) was positively correlated to SLA for all species combined across the gradient (R2 = 0·64), but the relationship was very weak (R2 = 0·08,0·34) for evergreen and deciduous species separately. Mass-based Am and rm were poorly correlated to Nm for all species combined across the gradient (R2 = 0·28 and 0·04, respectively). 5.,For each site-species combination, daily maximum Am was negatively correlated to vapour pressure deficit (VPD) (R2 = 0·36,0·59), but was poorly correlated to twig predawn water potential (R2 < 0·04). 6.,Instantaneous nitrogen-use efficiency (NUEi; Am divided by Nm) and water-use efficiency (,13C) increased significantly (P = 0·05) from high to low resource availability for both evergreen and deciduous conifers, except for NUEi in L. occidentalis. [source]


Hydrologic sources of carbon cycling uncertainty throughout the terrestrial,aquatic continuum

GLOBAL CHANGE BIOLOGY, Issue 11 2005
G. Darrel Jenerette
Abstract Linking hydrologic interactions with global carbon cycling will reduce the uncertainty associated with scaling-up empirical studies and facilitate the incorporation of terrestrial,aquatic linkages within global and regional change models. Much of the uncertainty in estimates of carbon fluxes associated with precipitation and hydrologic transport results from the extensive spatial and temporal heterogeneity in both intrinsic functioning and anthropogenic modification of hydrological cycles. To better understand this variation we developed a landscape ecological approach to coupled hydrologic,carbon cycling that merges local mechanisms with multiple-scale spatial heterogeneity. This spatially explicit framework is applied to examine variability in hydrologic influences on carbon cycling along a continental scale water availability gradient with an explicit consideration of human sources of variability. Hydrologic variation is an important component of the uncertainty in carbon cycling; accounting for this variation will improve understanding of current conditions and projections of future ecosystem responses to global change. [source]


The effect of tree height and light availability on photosynthetic leaf traits of four neotropical species differing in shade tolerance

FUNCTIONAL ECOLOGY, Issue 1 2000
T. Rijkers
Abstract 1.,Light-saturated rate of photosynthesis (Amax), nitrogen (N), chlorophyll (Chl) content and leaf mass per unit area (LMA) were measured in leaves of trees of different heights along a natural light gradient in a French Guiana rain forest. The following four species, arranged in order from most shade-tolerant to pioneer, were studied: Duguetia surinamensis, Vouacapoua americana, Dicorynia guianensis and Goupia glabra. Light availability of trees was estimated using hemispherical photography. 2.,The pioneer species Goupia had the lowest LMA and leaf N on both an area and mass basis, whereas Duguetia had the highest values. In general, leaf variables of Vouacapoua and Dicorynia tended to be intermediates. Because Amax/area was similar among species, Goupia showed both a much higher light-saturated photosynthetic nitrogen-use efficiency (PNUEmax) and Amax/mass. Leaves of Vouacapoua demonstrated the greatest plasticity in Amax/area, particularly in small saplings. 3.,A distinction could be made between the effect of tree height and light availability on the structural, i.e. LMA, and photosynthetic leaf characteristics of all four species. The direction and magnitude of the variation in variables were similar among species. 4.,LMA was the key variable that mainly determined variation in the other leaf variables along tree height and light availability gradients, with the exception of changes in chlorophyll concentration. Amax/area, N/area, LMA and stomatal conductance to water vapour (gs) increased, whereas Chl/mass decreased, with both increasing tree height and canopy openness. Amax/mass, PNUEmax and Amax/Chl increased with increasing openness only. N/mass and Chl/area were independent of tree height and openness, except for small saplings of Goupia which had a much lower Chl/area. [source]